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Study: Sections 2.2 and (2.4 until the subsection on “An Analytic Solution to the
Riccati Equation”) of Ref[2]



Optimal control of multi-stage systems over finite horizon

o Finite time optimal optimal LQR (free final state)
@ A brief introduction on Model Predictive Control (MPC)



Review: Optimal control of multi-stage systems over finite horizon
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Free final state: Linear systems with given initial condition
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ReviewOptimal LQR over finite horizon

‘ using ‘sweeping method’ we can obtain uj = —Kjyxy. ‘

where

Ki = (B Sk41Bi + Ri) 'BL Siy1Ak, k=0,1,--- N—1.

Sy can be calculated off-line from (backward iteration)
Sk = AL (S, + BrRIBI) TAG+ Qi k=N —-1,N—2,... 1,
Sn = SN (given).
Optimal control gain Ky, even when A, B, R, etc. are time invariant, is time varying!
Observations
@ the optimal control gain Ky can be computed off-line and stored
@ we can use the current state to generate the input u = —Kjyxy

@ this is a closed-loop feedback controller



Optimal LQR over finite horizon

@ Optimal cost-to-go for k € [i,N], 1 =10,1,--- ,N —1:

1
Ji= EXiTSi*Xi

Sy : performance index kernel matrix

N—19
k=0 *

@ How does cost change for a pre-specified control sequence {Ky}
1 1 N-1 1
Ji= EXLSNXN +3 Zk:i Xy Qioxic + gl Rwy = EXISiXi
Ji 2 J§
Here, for the given set of gains {Kk}}:lz_ol, the corresponding {Sk}E:_II is generated from
Sk = (Ax — BrKi) " Si1 (A — BiKi) + K RKie + Q, k=1,--- N—1,
Sn = SN
@ Observations
e optimal control gain Ky, even when A, B, R, etc. are time invariant, is time
varying
o time-varying feedback is not always convenient to implement

o need to compute and store sequences of K, € R™*™ control gains.

we may be satisfied by using sub-optimal gain, e.g., a constant gain



Optimal LQR over finite horizon: steady state solution

Limiting behavior of the Riccati equation

@ When does there exist a bounded S, to the Riccati equation for all choices of Sn7?
@ In general, Sy, depends on SN? When is Sy, the same for all choices of Sn?

© When is the closed-loop plant A — BK,, asymptotically stable?

Theorem

Let (A, B) be stabilizable. Then, for every choice of Sy, there exists a bounded S, to the
Riccati eq. Furthermore, S is a positive semi-definite solution to ARE

Theorem

| \

Let C be such that Q = CT C > 0, and suppose R > 0. Supposed (A, C) is observable, then
(A, B) is stabilizable if and only if

a) The is a unique S, > 0 to the Riccati equation. Furthermore S, is the unique positive
definite solution to ARE.

b) The closed-loop plant
Xkr1 = (A — BKeo)xx
is asymptotically stable, where

Koo = (BT SeB + R)IBTS,A.

A\




Review of stability of discrete-time LTI systems

Theorem
Let {A1, -+ ,Am}, m be the eignevalues of A € R™*™. The system
x(k+1) =Ax(k) is

@ asymptotically stable if and only of A\i| <1, Vi=1,---,m

o (marginally stable if \i| < 1, Yi=1,---, m, and the eigenvalues with unit
modulus have equal algebraic and geometric multiplicity?

@ unstable if 31 such that A;| > 1

2Algebraic multiplicity of A; = number of coincident roots A; of det(AI — A) = 0.
Geometric multiplicity A; = number of linearly independent eigenvectors v; of A
corresponding to Aj.




Review of stability of discrete-time LTI systems: examples
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Review of Lyapunov stability of discrete-time LTI systems

x(k+1) =Ax(k), x(0) €™ (x)

Theorem: The following statements are equivalent

The system (*) is asymptotically stable.
The system (*) is exponentially stable.
All the eigenvalues of A have magnitude strictly smaller than 1.

For every symmetric positive-definite matrix Q, there exists a unique solution
P to the following Stein equation (more commonly known as the
discrete-time Lyapunov equation)

ATPA—-P=-Q.

Moreover, P is symmetric and positive-definite.
For every matrix C for which the pair (A, C) is observable, there exists a
unique solution P to the Lyapunov equation

ATPA—P=-C'C.

Moreover, P is symmetric, positive-definite.



Optimal LQR over finite horizon: steady state solution

Theorem

Let (A, B) be stabilizable. Then, for every choice of Sy, there exists a bounded S, to the
Riccati eq. Furthermore, S, is a positive semi-definite solution to ARE

Theorem

Let C be such that Q = CTC > 0, and suppose R > 0. Supposed (A, C) is observable, then
(A, B) is stabilizable if and only if

a) The is a unique S, > 0 to the Riccati equation. Furthermore S is the unique positive
definite solution to ARE.

b) The closed-loop plant
k41 = (A — BKeo )Xk
is asymptotically stable, where

Koo = (BT SeoB + R)IBTS,A.

5\

@ If plant is observable through the fictitious output, all states are present in Jx. When Jy is
small, so are the states

@ If (A, C) is unobservable, if the unobservable state goes to infinity it does not effect the
cost. Boundedness of cost does not guarantee boundedness of trajectories
@ (A, C) detectable is enough

@ Choose Q and R wisely. E.g., Q e R™™, Q =CTC > 0= rank(C)=n = (A, C)
observable.



