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Parameter static optimization

Parameter static optimization: when time is not a parameter in the problem

@ Unconstrained optimization

@ Constrained optimization



Some notation convention

o Let F(x,u) be a real differentiable function taking values in R™ x R™ — R.
o Let f(x,u) be a real differentiable function taking values in R™ x R™ — RP.

Then
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Constrained optimization

x* =argmin f(x) s.t. x* =argmin f(x) s.t.
XERM or XERM
hi(x)=0, ie{l,---,m} h(x) =0,
gilx) <0, iefl,--- 1} g(x) <0,

f,h,g: continuously differentiable function of x
e.g., f,h, g € C! continuously differentiable
e.g., . h,g € C2 both f and its first derivative are continuously differentiable

First Order Necessary Condition for Optimality: x* is a local minimizer then

Vix*)TAx >0, for Ax e V(x*)

@ Set of first order feasible variations at x
V(x) ={d € R™ | Vhi(x)"d =0, Vg;(x)'d <0, jeA(x")}
@ Active inequality constraints at x
A =(efl - 1] g(x) =0}

A feasible vector x is said to be regular of the equality constraint gradients Vh;(x),

i=1,---,m, and the active inequality constraint gradients Vg;(x), j € A(x), are linearly
independent.




Necessary Conditions for Optimality: equality and inequality conditions

x* = argmin f(x) s.t. x* =argmin f(x) s.t.

xERM or x ERM™
hi(x)=0, i€{l---,m} h(x) =0,
gi(x) <0, je{Ll---, 7} g(x) <0,

@ A simple approach relies on the theory for equality constraints:
o Inactive constraints at x* do not matter, they can be ignored in the statement
of optimality conditions
o Active inequality constraints can be treated to a large extent as equality
constraints
x* is also a local minimum of

x* = argmin f(x) s.t.
xER™

hi(x)=0, 1€{l,--- ,m}
gj(x) =0, VjeA(x*)
If x* is regular for this equivalent optimization problem, then there exists Lagrange multipliers
Af.ooo A%, and g, § € A(x"):
VF(x*) + Z)\ Vhi(x*)+ > wivVg;(x*) =
i=1 JEA(x*)

But we need to require that u; >0 forj e A(x*).

This approach is limited by regularity condition!



Necessary Conditions for Optimality: equality and inequality conditions

Lagrangian function L : R™™™ i R: L(x,A) = f(x) 4+ X {%q Ajhi(x) + X {1 1jg;(x)

Proposition (Karush-Huhn-Tucker Necessary conditions)

Let x* be a local minimum of x* =argmin f(x) s.t.
XERM™

hi(x)=0,--- ,hm(x)=0
91(x) <0,---,gr(x) <0

where f, hi and gj are continuously differentiable functions from R™ to R. Assume the x* is

regular. Then there exists unique Lagrange multiplier vectors A* = (A7, ---,A},) and
e = (K1, -+, 1y, st

VxL(x*, A", 1) =0

}L{}O, j=1---,1

uy =0, Vj¢g iﬂx*l

active constraint set

If in addition f g and h are twice continuously differentiable we have
y ! Vi L(X", A%, w*)y >0,

for all
yeVx*)={y eR"Vhi(x*)'y=0, Vi=1---,m, Vgi\fx‘?‘y 0, jeAxx"}




Sufficiency Conditions for Optimality

Lagrangian function L : R™™™ i R: L(x,A) = f(x) 4+ > {%1 Ajhi(x) + X {_1 1jg;(x)

Second Order Sufficiency Conditions

Assume that f, hi and gj are twice continuously differentiable f, and let x* € R™,
A* = (AL A% and wf = (uf, -, 1}) satisfy

VXxL(x*,A*,1*) =0, h(x*) =0,
1y >0, j=1,---,1,

Wi =0, VgAY

Y VixL(x*, A", 1)y >0,

for all y € R™ such that Vh(x") ‘ y=0 Vi=1---,m, Vg;(x*) ‘ y=20, j€A(x").
Assume also that

wr >0, Vj e A(x*).
Then x* is a strict local minimum of

min f(x) s.t.
XER™

hi(x)=0,--- ,hm(x)=0
g1(x) <0,--+,gr(x) <0




Solution approach

One approach for using necessary conditions to solve inequality constrained
problems is to consider separately all the possible combinations of constraints
being active or inactive.



Constrained optimization: numerical example

minimize f(x) = x1 + X2 subject to

g(x)=(x1—1)2+x3—-1<0
@ H1: Constraint is active. To validate H1, we should have p > 0.

Lix, ) =x1 +%x2 +p(x1 —1)2+x3<1

FONC
Vi L, ) =1+2p(x1 —1) =0
Vi, Lx, 1) =1+2p(x2) =0 =
Vul(x,p)=(x1 —1)2+x3—-1=0
x1=1,x2=1pu= —% since 1 < 0 this solution is not acceptable
xf=1,x} =—1,p* =1 since u* > 0 this solution is a candidate for local minimizer

YVaxL(x* u* )y 2 0fory € V(x*) = {y e R?}[Vg(x*) Ty =0} = {y eR*|[0 —2]y

0}

*
Since VyxL(x*, n*) = [2"5 0 ] >0 (u* = 3), then SONC condition is definitely satisfied.

2p*
Also since the condition holds for strict > 0, then the second order sufficiency condition is satisfied
and x{ =1,xJ = —1 is a local minimizer.

H2: Constraint is not active. To validate H2, we should check that the identified stationary points
x* satisfy g(x*) < 0.

Vi, fx)
Vo, f(x) =

1=
1=

0 . L .
0 => there is no solution in this case



Constrained optimization: numerical example

minimize f(x) = 2X% + 2x1X3 + x% — 10x; — 10x, subject to
g1(x) =x}+x3—-5<0
g2(x) =3x1 +x2—6<0

4xy + 2%, — 10 2 2
Vet = [ 132 30 et = [ Vaget =[]

@ H1: both constraints are inactive: g; <0, g2 < 0 and p; = pup =0.

FONC:

Vi f(x) =4x1 +2x2 —10=0 o .

Vi f(x) =2x; +2x, —10=0 [~ X1 =0x2=5
g1(x1 =0,xp =5) =20 >0 and g>(x1 = 0,x2 = —1 < 0. Since H1 is not correct, this case is not
possible.

@ H2: both constraints are active: g3 =0, g2 =0 and py, np > 0.

L(x, 1) = 2x2 + 2x1x2 + X3 — 10x1 — 10%2 + p1 (x3 4+ %3 — 5) + po(3x1 + X2 — 6)
FONC:
L(x, p) =4%x1 +2xp — 10+ 2u3x1 +3p, =0
L(x, p) =2x1 +2x, — 10+ 2pox2 + pp =0 -
Lix,u)=x}+x}—-5=0
L(x,u) =3x1+%x2—6=0

[1a7

X = 2.1742 I since < 0 this solution is not acceptable
T |—o05225)'H T | 422 Ince s solution 1 prable.
U= { 1 02} since p, < 0 this solution is not acceptable.



Constrained optimization: numerical example

@ H3: g; is inactive (g1 < 0, iy =0), and g» is active (p2 > 0).
L(x,p) = 2xf + 2x1X2 + x% —10x7 — 10x2 + H2(3x1 + X2 — 6)
FONC:

Vi L(x, 1) =4x1 +2x2 — 10+ 32 =0 04
Vi, Llx, 1) =2x1 +2x2 =10+ p2 =0 = x = [0-8] , n2 =—0.4.
Vi Lix, ) =3x1 +x2—6=0 )

since 1y < 0 this solution is not acceptable.

@ H4: gy is inactive (g2 < 0, np = 0), and g; is inactive (1 > 0).

L(x, 1) = 2x3 +2x1x2 + x3 — 10x; — 10x2 + py (x2 +x3 — 5)

FONC:
Vle(x,u) 4x1 +2xp — 10+ 2u3x; =0 1
Vi Lx, 1) = 2x1 +2x2 — 10 + 23 x2 =0 :>x*:[2], nr =1
Vi, Lix, 1) =x?+x3—-5=0
since p; > 0 this solution is qualified as KKT solution.
Now we need to validate H4: go(x; =1,x, =2) = —1 < 0, therefore H4 is correct.
SONC:
YVax L(x* u¥)y 2 0fory € V(x*) = {y e R*|Vgi1(x*) Ty =0} = {y eR*|[2 4]y =0}
*
Since Vi L(x*, u*) = 4424 2 +| >0 (n* =1), then SONC condition is definitely
2 2+ 2uy

satisfied. Also since the condition holds for strict > 0, then the second order sufficiency condition is
satisfied and x{ = 1,xJ = 2 is a local minimizer.



Optimal control and its connection to constrained optimization

Optimal Control Example

Single stage system Multi stage system
w(0) ’ wo) w1) wN-1)
1 2 N-1
x(0) =[P x(1) | 0= SIS I )
N-—1 .
w*(0) = argmin b (x(1)) + L°(x(0), u(0)) | uw* =argmind(x(N)) + Y Li(x(),u(i)) s.t.
k=0

J(uw(0),--- , u(N—-1))
x(N) =fN"(x(N —1),u(N—1)),

J(u(0))
s.t. x(1) = 2(x(0),u(0)), ’
x(0) =xp € R™. ’

) x(1) =f°(x(0), 1(0)),
’ x(0) =x¢ € R™.

The problems above are in the general form of:

u* =argmin F(x,u), s.t.,
uweRM

f(x,u)=0

where F: R™ ™™ s R and f:R™ ™ — R™ are differentiable.




Constrained optimization

u* =argmin F(x,u), s.t.,
ueR™

f(x,u)=0

where F: R™™™ — R and f: R™™™ — R™ are differentiable.

Trivial solution: solve via direct substitution, i.e.,

@ find x in terms of u from f(x,u) =0,

@ substitute in F(x,u) to eliminate x and obtain an unconstrained optimization
problem in terms of u.

Works best for simple linear f’s (assumption is that not both of f and F are Iinear)‘




Constrained optimization

u* =argmin F(x,u), s.t.,
ueR™

f(x,u) =0

where F: R™™™ — R and f: R™™™ — R™ are differentiable.

Feasible set: Sf.s = {(x,u) € R™ x R™|f(x,u) = 0}.

To obtain a criterion for optimality (in minimization sense):

@ start with (x,U) € Steas as candidate for local minimum,

@ we investigate how dF changes for points in Sg.s in close neighborhood of (x, 1)

First-order analysis:

f(x 4+ dx, w4 du)~f(x, u) + £ du+ £ dx,

F(x 4 dx, w4 du) ~F(x,u) + F du + Fdx,
| ———

dF



Constrained optimization

First-order necessary condition for a point to be a minimizer:

fldu+f] dx =0, let du vary freely, but dx = — ()~ (f,) " du,
=
Fldx +Fldu> 0. 15t order Neces. condition : F, — f,f 'F, = 0.

Critical point: dF = 0 for neighboring points (x + dx, u+ du) € Steas

Neces. and sufficient condition for a point to be critical point :

fldu+f] dx =0,
{ Fu— fufy1F, =0,

Fldx+Fldu=0.



Constrained optimization: method of Lagrange multipliers

u* =argmin F(x,u), s.t.,
ueR™

f(x,u) =0

where F: R™™ — R and f: R™™ — R™ are differentiable.

@ to determine neighboring points, dx and du are not independent
o Lagrange multiplier A = [A;,--- ,A]T € R™ captures this dependency

H(x,u,A) = F(x,u) + AT f(x, u),
f(x,u) =0.

First-order analysis

Necessary and sufficient cond. for critical point

dx = —(f) T (f) Tdu, M _F fa—0,
A*_(fx)il]:x- %:Fu+fu)\ =
% =0= f(x,u) =0.



min F(x, 1) = x% 4+ x3 + x2 + 2u; up + u2 + u?
fHx,u) =x; —x2+u =0,
flix,u) =xo+2x3— Uy +1=0,
f2(x, 1) = X2 + X3 +x1 =0.

1 0 1 2x;
1 0 0 2u; +2up
fy=|—-1 1 1}, fu:[ ],Fx: 2Xz,Fu:[ }
0 2 1 0 1 0 2xs 2up + 2wy

H=F(x,u)+ATf(x,u) =F(x,u) + A F1(x, u) 4+ Az £2(x, u) + Az £3(x, 1)

AF (x,u) arl(x,u) 2 (x,u) a3 (x,u)
Hu _ oug +}\1 oug +7\2 oug +7\3 oug

AF (x,u) afl(x,u) 92 (x,u) a3 (x,u)
duy +A duy +A2 duy +A3 duy

2u1+2u2} 4 [1 0 0])\: {2u1+2u2+?\1

:F“+f“)\:[2uz+2u1 0 -1 0 2us +2u; — A

2x1 1 0 1 2x1 + A1+ A3
Hy =Fx + fxA= [2x2| + [-1 1 1[A=[2x2— A1+ Ax+ A3
2x3 0 2 1 2%3 + 2A + A3



{2u1+2u2+7\1 =0

Hy =0=
" 2Us +2u; — A =0

2x1+A1+A3=0
2x2 — A1+ A2+ A3=0
2x3+2A2+ A3 =0

I
e
I
o
¢

X1 —X2+u; =0,
f(x,u) =0=><{x2+2x3—up+1=0,
X2 +x3+x1 =0.

7 equations, 7 unknowns: can be solved to find critical point(s)

AF =2,
As = —2,
A =2,
X7 = —2,
x5 =1,
x3 =1,
ujy =3,

us = —4.



Constrained optimization: second order necessary and sufficient conditions

for optimality

w* =argmin H(x,u) = F(x,u) + AT f(x,u), s.t.,

u* =argmin F(x,u), s.t.,
ueR™

uerRm™
f(x,u)=0 f(x,u)=0

Second-order analysis around critical point

Necessary and sufficient cond. for (x*, u*) to be a critical point

u

%—;‘ =0= f(x*,u*) =0.

{’%‘; =Fx+fxA =0, 3 =Fy, +fu A =0, Q(x*,u*)
(x* 4+ dx, W + du) € Sfeas: dx = — ()~ fldu.
H(x* +dx, u* +du) =
1 1
H(x*, w*)+ H dutH dx + deTHxxdx+dequdu+EduTHuudu+ 0(3) =
H H dx
T T XX xu o
[dx du ] |:Hux Huu:l {du} +0(3) =
Hox qu} {*(fx)l qu du+ O(3)

I lux I luu

N | =

H(x*, u*) +

H(x*, u*) + %duT [—fulfx) ™t I [



Constrained optimization: second order necessary and sufficient conditions

for optimality

» 2nd order necessary cond.

Tr_ -1 Haxx Hxu *(foinT
du' [—fu(fy) I] |:Hux e u

<

_ —T T
[—fu(fx)™ 1] {]:lxx ]:lxu} { (f")I f”} >0, @(x*, u*) positive semi-definite matrix
ux uuw

» 2nd order necessary cond.

(£ )-TT
du’ [—fu(fx)™t 1] m”‘ EX“} { (fX)I f“] du>0, du#0
ux uuw

54

_ ST T
[7fu(fx)*l I} {Ezz Ezﬂ { (f")l f“} >0, @(x*,u*) positive definite matrix



Constrained optimization: an iterative solver

u* :arggnin F(x,u), s.t., u* :argmrmn H(x,u) = F(x,u) + AT f(x,u), s.t.,
f(x,u) =0 f(x,u) =0
dx = —(£,)~ T (£,)Tdu @ Select initial u(k), k=0
AT = —(f)IF @ Determine x(k) from f(x(k), u(k)) = 0
dF — FT’dx +’FT du @ Determine 7\ = —(fy) ' Fy

_ (;fll (TV) 1F¥ 4 Fu) T dlL o Determlne = Fu + f A

— (Fy + fuA) Tdu © Determine u(k—l— 1) = u(k) — aHy,

= H/ du @ Determine predicted change in value of F

T T
Necessary and sufficient cond. AF =AH =H, Au=—aH, H..

f itical poi .
or critical point If AF = AH is sufficiently small, stop.

M _f 4 fA=0, Otherwise go to step 2.
% =F,+fuA=0,
% =0= f(x,u)=0.



Constrained optimization: fmincon

Problem:
minimize F(x, u) = x> +u?, .s.t.,
x+u+2=0
Code for fmincon:

@ a function to list equality constraints

function [c,ceq] = EqualFun(x)
ceq = x(1) + x(2) +2;
c=1[k

@ the main code

nonlcon = @EqualFun;

A=

b=

Aeq = [];

beq = [];

b=

ub = [];

x0 = [0,0];

[x,fval,exitflag,output] = fmincon(fun,x0,A,b,Aeq,beq,Ib,ub,nonlcon)



Optimal control and its connection to constrained optimization

u* =argmin F(x,u), s.t.,
uerR™

f(x,u) =0

where F: R™™™ — R and f: R™™™ — R™ are differentiable.

Optimal Control Example

Single stage system Multi stage system
) ) u(0) u(1) u(N-1)
1 2 N—-1
x(0) =T E> x(1) x(0) == = XN s xN)
N—1
u* (0) = argmin ¢ (x (1)) + L°(x(0),11(0)) u* =argmin(x(N)) + Y L'(x(i), u(i)) s.t.
J(u(o)) hingy
J(w(0), -+ u(N-—1))

x(0) = xp € R™. X(N) =FNHx(N = 1), u(N —1)),

x(1) =f°(x(0),u(0)),

|
|
s.t. x(1) = f°(x(0),1(0)), )
|
|
) x(0) =xo € R™.



First order optimality condition for single stage optimal control

1(0)* = argmin J(x(1),1(0)) = ¢ (x(1)) + L°(x(0),1£(0)), s.t.,
1w (0)ER™

x(1) = f°(x(0),1(0)), x(1) €R™, u(0) eR™,
x(0) = xg € R™, (given initial condition).

@ T =J+A(1)T(f(x(0),1(0)) — x(1)) = b (x(1))+L(x(0),u(0)) +A(1) T (f(x(0),u(0))—x(1))
@ Let H%(x(0),1(0)),A(1)) = L%(x(0),1(0)) +A(1) T (f°(x(0),1(0))).
@ Then, we can rewrite J as ] = (b (x(1)) —A(1) T x(1)) + HO(x(0), u(0), A(1)).

First order analysis:

T(x(1) + dx (1), u(0)+du(0)) = J(x(1),1(0))+
)

& (x(1) oHC dHO
(W A(1) Tdx(1) +(ax(0))de(0) + (W)T (0)
aj

Here dx(0) = 0 because the initial condition is given (no need for variation). Think of du(0) as free
variable and dx (1) the dependent variable, which is defined from the constraint equation (constraint
equation relates dx (1) to du(0)). Next, pick A(1) such that

06(x(1) 51y g

ox(1)
. . - - OH® -
which gives us J(x(1) + dx(1),u(0) + du(0)) = J(x(1),u(0)) + ( 2u(0) ) ' du(0).
Nt



First order optimality condition for single stage optimal control (cont’d)

@ For (x(1),1(0)) to be a minimum point we need dJ = (%)Tdu(o) > 0. Because we
are free to vary du(0) in all directions, then the necessary condition for (x(1), 1 (0)) to be
a minimum point is aaT%)) =0.

@ To summarize:
First order necessary condition for (x(1),1(0)) to be a minimum point:

?\(lg = adgg:;%))y n eq
aaT%) =0, m eq

x(1) = fO(x(0), u(0)), n eql

Here, we have 2n + m equation for 2n + m unknowns (the unknowns in the set of
equations above are A(1) € R™, x(1) € R™ and u(0) € R™).

Iwhich can also be written as x (1) = AT



The following material will be discussed in the next lecture.



First order optimality condition for multi-stage optimal control

N—1_.
(W (0), -+, u* (N —1)) = argmin  J=¢(x(N)+) -~ "Li(x(i)u(i), s.t.,
(W(0)ERM ... u(N—1)eR™ U=

x(1) = fO(x(0),u(0)), x(1) €R™, u(0) € R™,

x(N) = fN"x(N—1),u(N—-1)), x(N)€ER™, u(N—-1)€cR™,
x(0) = xg € R™, (given initial condition).

@ J=TJ+A](f(xo, uo)*Xl)Jr AN T (N1, un 1) — X)) =
G xn )+ X D L (ke w) + AT (P (xi, wi) —xi41))

@ Let HU(xi,ui),Ai41) =LY (xi,uy) +?\i p (P (xi,wi ).
@ Then, we can rewrite J as ] = (b (xn) — AL xn)+3 N (HE(xi, i) — AT xq) 4+ HO.
First order analysis: Here dx(0) = 0 because the initial condition is given (no need for variation).

- ddb(xn) N i QM AHO
dj= (/2 de+Z ) Tdx 1+(aui)Tduif?\;rdxi)+( )T

HO
aXN aXO dX0+( auo ) d‘LL[)

D _
_0d(xn) )T OH' OHY + OHO -
= (5 de+Z( Tdxi i+ 5y du1)+( o) e



First order optimality condition for multi-stage optimal control (cont’d)

@ Think of du(i), 1=0,---,N — 1 as free variable and dx(i + 1) the dependent variable, which is
defined from the constraint equation (constraint equation relates dx (i + 1) to du(1i)).
@ Next, pick AN such that od(xn) AN =0,
aXN
. ) i
@ also pick A, such that aa]: AL =0, i=1--- N-1
i

@ Then, we have

_ i 0
a7 = Y (15 ) + (50T dug

ouy
For (u(0), -+, u(N —1),x(1),---,x(N)) to be a minimum point we need
dT = Zl\‘,l ([ ont )Tduyg ) + (50 8”0 )Tduo 0. Because we are free to vary duy,
l
1i=0,---,N —1in all directions, then the necessary condition for
(u(O),~~ ,u(N —1),%x(1),--- ,x(N)) to be a minimum point is aE =0,i=0,---,N—1.

@ Putting all the conditions we stated and derived, we obtain:
First order necessary condition for (x(1),u(0)) to be a minimum point:

An = ¢ (xN)

= —oxn n eq
%u =0, 1=0,---,N—-1 N m eq
xl+17f (xi,ui), i=0,---,N—1 Nn eq?

Here, we have 2N + N'm equation for 2N1 + m unknowns (the unknowns in the set of equations
above are A; € R™, x; ER™ and uj—; € R™,i=1,---,N).

oH!

2which can also be written as Xi4l = 3a, 7
1



Optimal control of multi-stage systems over finite horizon

N— 1
u* = argmin ¢ (x +Zk " k), u(k)) s.t.

J(w(0),-+ u(N—1))

u(0) u(1) u(N-1)

1 2 N-1
0) DS T <)

H* = LR (x(k), u(k)) +A(k + 1) T%(x(k),u(k)), k=0,1---,

Free final state Constrained final state, i.e.,

P(x(n)) =0, b:R™ - RP, p<N
9 (x(N))
AN) Toax(N) ‘

P(x(n)) =0,
LA A (x(N) + v b (x(n))

AMK) = gy k=t N=L ‘ AN = R

- dHK - ) _ OHK
0=3upg: k=0 N-L ‘ AK) = 3y k=t N

OHKk K

x[k+1):m,k:1,-..,N—1, ‘ OzaauH(k)' —0,--- N-1,

x(0) = xo, given initial condition, ‘ dHK

k - _
{O = ax]_([g)' free initial condition. ‘ x(le+1) OA(k+1)’ !
|

{X(O) = X, given initial condition,
0

0= ax]?o) , free initial condition.




Optimal control of multi-stage systems over finite horizon: regulator problem

o1 1 N—1
w = argmmixLSNxN + > Zk:o xIQka 4 uIRkuk s.t.

u(0) u(1) u(N-1)
4 x(1) Y L x(2) x(N—1
x(0) =] Aoxo + Bowo F——=>] A1x1 + Biui | > [An—1xno1 + Broaun 1 == x(N)
k 1 T 1+ T 5
H® = 5% Quexic + Sy Rictie + Ay (Arxie + Br), - k=01, . N —1
Free final state: Linear systems with given initial condition
0¢ (x(N))
AN)= —— — An =S
( ) aX(N) N NXN,
oHk .
Alk) = ax(ky T ho Nl = A= Quxi+ Ap Ak, k=1 N,
OH*
0= , k=0 ,N-1 = 0= v , k=0,--- ,N—1,
ou(k) Rrug + By Akt k=0 N-—-1
oHK
k+1)= ———
x(k+1) = 55751

= f*(x(k),u(k)), k=0,--- ,N—1 — Xpq1 = Arxg +Bruy, k=1,--- N-—1,
x(0) = xo — x(0) = xg.



Optimal control of multi-stage systems over finite horizon: regulator problem

o1 1 N—1
w = argmmixLSNxN + > Zk:o xIQka 4 uIRkuk s.t.

u(0) u(1) u(N-—-1)
{} x(1) {} L x(2) x(N—1
x(0) =] Aoxo + Bowo F——=>] A1x1 + Biui | > [An—1xno1 + Broaun 1 == x(N)

AN = SNXN,

Ak:Qka+Al—<rAk+1, k=1---,N—1,

0 = Ryuy + Bl—<r7\k+1,ﬁ» wt = _REIBI)\M—L K=0 .  N—1

Xi41 = ArxXi + By, = Xiq1 = Agxg — BRRIIBY Apr k=1,-+- N —1,
x(0) = xp.

x(k+1)]  [Ax —BxR !B/ x (k) -~ B

{ A(K) } = {Qk Af Ak+1)| x(0) = x0, AN = SNXN-
If Ay is invertible: x = A xyq1 + AL BRI B Ayr1. Then, we can write
x(K)] [ A A 'BRR B x(k+1) B B
{Mk)] - [QkAgl AT + QUATBRRIB] | [A(k+ 1) x(0) = xo, AN = Snxn.
If we had xn and Ay, we could solve the equation above backward in time, but unfortunately
we have xg and Ayn.



