Optimal Control

Lecture 14

Solmaz S. Kia
Mechanical and Aerospace Engineering Dept.

University of California Irvine
solmaz@uci.edu

Note: These slides only cover small part of the lecture. For details and other
discussions consult your class notes.
Reading suggestion: Section 5.2 of Ref [1]
For infinite horizon LQR you can study: Section 6.2 of Ref[3] (see the syllabus/class
website for the list of the references)”.



@ Optimal Control
o Properties of optimal contorl
o LQR problem for continuous-time systems
o Dynamic signal tracking in finite-time



Optimal control (Review)

ur(t = argmin(J = h(x(t¢), t) +th g(x(t), u(t),t))dt, s.t.

‘tG[tovtf] u(t)eu
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m(x(tf), tf) = 0 <~ when final state is constrained,

x(t) :R—R", u(t):R—R™, f:R"xR™ xR —R™

@ Hamiltonian H(x,u,p,t) = g(x(t),u(t),t) + p(t)Ta(x(t), u(t),t),

first order conditions for extremal solution

P = —Hy, (n dimensional)
0= Hy, (m dimensional)
X =Hp: x=a(xu,t), (n dimensional)
———————————— boundary conditions - — — — — — — — — — — —
@ x(to) =xo0 m(x(te), te) =
A Let w(x(t¢), v, te)=h(x(te),te)+v I m(x(te), te)

@ if t¢ free: ot . + H(tf) =0 @ x(to) = xo

@ if x;(tr) is fixed: xi(tf) = xi; @ since x(t¢) is not directly given we need
pltr) = 32 (tr)

@ if xi(tg)is free: pi(te)=21(ty)

oxj

@ if tf free: aa—"t" t+H(tf) =0 (disappears if ts known)
f



Properties of Hamiltonian

te
u*(t)‘ — argmin(J = h(x(ts), tf) +J g(x(t), u(t), t))dt, s.t.
teltotel  y(t)eu to
t) = a(x(t),u(t), t),
to), to is given,
t¢), tevarious final state constrained,

(
(
(te

) :R—R", u(t):R—=R™, f:R"XR™XxR—-R" C:R"xR™ xR —R9.

x
X
X
X

H = g(x(t),u(t), t)) +p(t) "alx(t), ult),t)

@ If g(x,u) and a(x,u) do not explicitly depend on time t, then the Hamiltonian H is at
least piece-wise contract.
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ap Mt



ar e

@ The third necessary condition is H,, = 0 so

dH .

which suggest H is constant

o It might be possible for the value of this constant to change at a discontinuity
of u, since then 1t would be infinite, and 0.c0 is not defined.
o This H is at least piece-wise constant.

@ For free final time problems, the transversality condition gives
hy + H(t¢) =0

@ If h is not function of time then hy = 0 and as a result H(t;) = 0.
@ with no jumps in u, H is constant: H(t) =0 for all t € [ty.t¢].



Finite time LQR problem

* =argmin(] = %X(tf)Tfo(tf) + %th (xTQ(t)x + u"R(t)u)dt, s.t.
0

telto tel u(t)eu
t) = A(t)x + B(t)u,

X

x(to), to is given,

(

(
x(t¢) is free
x(t):R—=R", u(t):R—R™, Q(t)>0, H >0, R(t) >0.

o Hamiltonian
Hx,wp, ) = 2 (x0T QUx(t)-HuT (OR(u(t) Jip(t) T (AL(EHB(ult),

FONC:

e x=H, = x=A(t)x+B(t)u

ep=—H,= p=—Qt)x—A(t)p,

e 0=H, = RHu)+BHt)Tp(t)=0 = ur(t) = R(t) 'Blt) plt)

@ Boundary condition
d5x Hfx

plte) = e, = Hx(tf)



Finite time LQR

m _ [A(H) —B(t)R(t)lB(t)T} m

p -Q —A(t)" %
with BC
x(0) = xo,
plte) = Hx(t¢)
{x(td] _ [dm(tf,t) b1a(ts t)} {x(t)]
(te) bor(te, t)  baa(te, t)| [p(t)
b (tr,t)
]




Finite time LQR

wH(t) = —R(1)'B(t) T p*(t)

W = —R(t)1B(t) TK(t) x* (1) \

K(t) = (paa(te, t) — H d1o(ty, t))_l(Hfd>11(tf, t) — a1 (tr, 1))
or
Riccati type differential equation: p(t) = K(t)x(t) + K(t)x(t) =

K(t) = —Kt)A) —AT(DK(H) — Q(t) + K()B(t)R(t)BT (t)K(t),
K(tf) = HF.

@ Optimal tracking control is a state feedback control
@ The state feedback gain is time-varying
@ Optimal cost to go Jin(x(ti)) = %x(ti)TK(ti)x(ti).



LQR: the steady state Riccati equation (SSRE)

For LTI systems, Kalman has shown that the Riccati equation has a steady state solution if (see
Kirk)

@ A, B,R, Q are constant
@ Hf =0,

@ (A, B) is controllable,

SS Riccati equation is ATK + KA 4+ Q —KBR™IBTK =0

- You can find the SS feedback using F = 1qr (A, B, Q, R) in Matlab. For further information
see https://www.mathworks.com/help/control/ref/lqr.html


https://www.mathworks.com/help/control/ref/lqr.html

Finite time linear tracking problem

u(t) = argmin(J = 1(x(tf) —r(te)) TH (x(te) — 7 (ts)) +
teltotel  w(t)eu 2
%tf((x(t)—'r(t))TQ(t)(x(t)—r(t))—!—uTR(t)u)dt s.t. |s
0
x(t) =A(t)x+ B(t)u,

x(tg) is free

(

x(to), to is given,
(
(

x(t):R—=R" u(t):R—R™, Q(t)>0, Hf >0, R(t)>o0.

@ Hamiltonian 1
Hix,u,p,t) =5 ((x(t) — (1) T Q) (x(t) — (1)) +u’ (tJR(t)u(t)) +
p(t) " (A(X(t)+B(tu(t),
FONC:
e x=H, = x=A(t)x+B(tJu
op=—Hc= p=—Q(t)x—A(t)Tp,
e 0=H, = RO +BH)Tp(t)=0 = u(t) = R(t) 'Blt) plt)
(

ol (x— THf (x—
1(x rtf)}dx (x r(“f)|tf = Hf(x(tf) — r(t¢))

@ Boundary condition: p(tf) =



Finite time linear tracking problem

with BC

x(te)| _ [dulte, t)  dualte, t)] [x(t) b
[ (tf)} = [qm(tf,t) dm(tf,t)} {p(t)} *L, oLt ) [Q(T) (w)] dr
d(tr,t) f1(t)
fa(t)
+
plte) = H'(te) — H'r(ty)
I



Finite time linear tracking problem

W= —R(1)1B(1) TK(t) x*(t) — R(t)1B(1) Ts(t) = F(1)x* (t) + v(t) \

where K(t) and s(t) are computed from (use p(t) = K(t)x(t) + K(t)x(t) + $(t))

K =—Kt)AH)—AT(H)K(H)—Q(t)+K(t)B(t)R ()BT (t)K(t), K(tf) =HT,
§=—(A[)T—K)B(t)R(t) 'B(t) )s(t)+Q(t)r(t), s(te) = —Hr(te).



