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@ Calculus of variation
@ Optimal Control



Piecewise-smooth extremals

@ So far we focused on admissible x(t) that are continuous with continuous first derivatives
@ We want to expand to class if piecewise-smooth admissible functions

e control input is no smooth (e.f., subject to saturation)
(t), u(t)
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Tllustration of a piecewise continuous control u € (f[f,o,ﬁf] (red line), and the
cor ing piecewis i y differentiable response & € C'[to, t7] (blue line).

o intermediate state constraints are imposed

Objective: determine vector function x*(t) in the class of functions with piecewise-continuous
first derivative that is a local extremum of
te

I(x(t)):J g(x(t), % t)d(t)

to

and respects x(tg) = xg € R™, x(t¢) = x¢ for given and fixed tg, xo, t¢ and x¢



Piecewise-smooth extremal

Objective: determine vector function x*(t) in the class of functions with piecewise-continuous
first derivative that is a local extremum of
te

I(X(t)):J g(x (1), % t)d(t)

to
and respects x(tg) = xo € R™ for given and fixed tg, xo, tf and x(tf)

@ Assume % has a discontinuity at t; € (to, tf), where t1 is not fixed (or known)

te t te
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Piecewise-smooth extremal
x(1)

5 =f1(gx -

to

t1

from lefthand side 6x1 = &x(t7 ) + x(t; )oty,

1 1
from righthand side &x; = &x(t] ) + x(t])8t1,

d
x — agx)éxdt+ [g(

T dt 0%

x*(to) = xo,

Weierstrasss-Erdmann Condition {

d _ _ _
ng)5th+ Q(tl Joty + gic(t1 )5X(t1 )

ty d
| “tox = gronendt— g(t])5t — ga (1] )8x(t])

t7) — gk (ty )% (tg
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4199 (r (1), 5% (1), 1)1 = 0,

g(ty)

@ Continuity requires that these two
expression for dx1 be equal

@ Already now that it is possible
) # X(tf), so possible that

Sx(ty) # ox(t])

1)18t1 + gx(t7)0x1

X (tf)5X1

t € (to, tr)
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gx (t1 )%(t1) = g(t]) — gx (1 )% (])




Piecewise-smooth extremal

Typical scenarios that introduce corners is when there exists intermediate constraints
x(t1) =0 (t1)

@ Constraint couples the allowable variations in dx; and dt;

de .
ox1 = Eétl =0(t1)0t1

D18t + g (t7)8%1 + [ (9«

° 5] = I;(gx— & gx)dxdt + [gty) — g (t7)x(t
d . _ t+) — + (e
dtgx)6th [g(t 1) gx(t )x ( )]5t1 gx(tl )dx1
8] = [ii(gx — 5 )5xdt+[ (t7) — gx (E7 )% (t7)18ts + gx (£ ) (B (t; )8t1) +
dt — (tr)—gk(tr)fc(tr)]étl—gk(tr)(o(tﬁém

1 (gx — Fr9x)0x
94199 (r (1), 55 (1), )] = 0, t € (to,tr)

29 (o (1), %5 (1), 1) — S 29

ox
x*(to) = xo,
g(ty) + gx(t7)[0(t)

x(t1) = 0(t1)

%(t0)] = g(t]) + g (D) O (t) — % (t])]

=0(t1).

1) no longer is needed. Instead we have x(t1)

@ Note here that gx(t7 ) = g« (t]



Piecewise-smooth extremal: Example

Example: Find the shortest length path joining the points x =0, t = —2 and
x =0 and t = 1 that touches the curve x = t?> + 3 at some point.

Solution is the dashed blue lines



Optimal control

We are going to focus on solving

te
ur(t) teltpte] irg?;lg(l = h(x(ts), tr) +L0 g(x(t),u(t),t))dt, s.t.
x(t) = a(x(t), u(t), t),
x(to), to is given,

m(x(t¢), tr) =0« when final state is constrained,

x(t):R—=R"™ u(t):R—R™, f:R"xR™xR—R".

@ Use Lagrange multiplier to write

te

J =h(x(te), te) + L (gx(t),u(t), t) + p(t) " (alx(t), u(t), t) — %(t)))dt
0



Optimal control

We are going to focus on solving

te

u*(t) — = ir(%?;ig(] = h(x(t¢), tf) +L0 g(x(t), u(t),t))dt, s.t.

x(t) = a(x(t), u(t), t),
x(to), to is given,

m(x(t¢), tr) =0« when final state is constrained,

x(t):R—=R"™ u(t):R—R™, f:R"xR™xR—R".

@ Use Lagrange multiplier to write

tf
J =h(x(ts) tr) +J (gx(t),u(t), t) +p(t) " (a(x(t),u(t), t) — x(t)))dt

to

@ Define the Hamiltonian to help with sorting out the equations
HOow, pot) = g(x(t),u(t), t) +p(t) Talx(t), u(t),t)




Optimal control

8Ja =(hx —p(te))Tox; + [he, + g +P (a—%) +p %] ot+
f

te
+J [(Ha+9) 8% (1) + HTsu(1) + (@ —%)Top(0)]dt

to

first order conditions for extremal solution

P = —Hy, (n dimensional)
0= H,, (m dimensional)
0=Hp, = %=a(x,u,t), (n dimensional)

Boundary conditions x(tg) = xp, and

@ if ty free
he, +g+p'a=he, +H(tr) =0

@ if xi(tr) is fixed: xi(tf) = xi,

@ if xi(tf) is free, then pi(ts) = Oh (1)

oxi



Constrained functional optimization: example

@ Minimum-time path through a region of position dependent vector velocity (Zernelo's
problem)
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Example of an ocean current vector field

o The forward velocity of the ship V is constant but its steering angle 6 can be
controlled.

o in the depicted example, it is assume that the current’s velocity vector is only
in x direction
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see [Bryson and Ho]



Next couple of slides are for self-study



Constrained functional optimization

Determine vector function w*(t) : R — R™"™ in the class of functions with continuous first
derivative that is a local extremum of

te
I(W(t).t):L g(w(t), W, )d(t)
and respects

f(w(t),w(t),t) = 0n, set of n differential equations,
w(tg) =wp € RMT™,

w(ts) =wys various terminal conditions possible.

m
@ in control problems w = {u €R }

x € R™
To derive the first order necessary conditions we proceed with the following

@ Similar to function parameter optimization, augment the cost functional with the
constraint using Lagrange multiplier

te

Jatw(t) 1) = [ (90w(0), %, 1)+ PO Flw (). 4b, 1)) d(1)
to

@ Notice that p(t) is is time-varying (gives more degree of freedom)

@ If constraint is satisfied the augmented cost functional is same as J(w(t), t)



Constrained functional optimization (cont’d)

@ Let
ga(W(t), p(t), W(t),t) = g(w(t), w(t),t) +p(t) fw(t), Ww(t),t)

@ Then

te

Jalw(t),p(6),5%,5p, 1) = | (galw(t), p(t).%0,0))d(t)
0

@ Invoke Fundamental Theorem of Calculus of Variation: 8], (w*(t), p*(t), d%,dp,t) =0

@ The variations dx and &p are independent from one another.

The first order necessary conditions are

9ga(w(t) p(t)Ww,it) i[agu(W(t),p(t),WVt)} -0
ow dt ow -

Euler equation :
9ga (W) p()awt) _ d [3ga(w(t)p()wt)] _ g
p dt p =4

290 (W(tLp(tlit) _ d [29aWWPWW] _ 0 (n 4 m dimensional)

w(to) = wo,
w(ts) = wy,

f(w,w,t) =0, (n dimensional).

@ wr(t):R— R ™ p*(t) :R — R"



