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Review: optimal control problems of interest

. tF )
‘te[to,tf] = argmin (](X(t)) = Lo g(x(t),x(t),t)dt> s.t.
x(to) = xo,

x(tf) = x¢ (various terminal conditions )

t
ur(t) = argmin(J = h(x(t¢), tr) +J f g(x(t), u(t), t)dt), s.t.
teltote]l  y(t)eu to

x(t) = f(x(t), u(t), t),
x(tg), to is given,

m(x(ts), tf) =0+ when final state is constrained,

x(t):R—=R"™ wu(t):R—R™, f:R"xR™xR—>R".




Review: extremal of a functional: fundamental theorem of the calculus of

variation

Minimizer of a functional J(x(t)) is x*(t) if
JOx* (1)) < J(x(t))

for all admissible x(t) in ||x(t) —x*(t)] < €.

Minimizer of a function f(q) is q* if
f(q") < f(q)
for all admissible q in ||g — q*|| < €

Fundamental theorem of the calculus of variation

ol X o

@ Let x be a vector function of t in the class Q, and o
J(x) be a differential functional of x. (
@ Assume that all x € Q are not constrained by any
boundaries. If x* is an extremal function, the
variation of ] must vanish in x*
3 (x*,86x) =0

for all admissible x € Q.
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First order necessary optimality conditions

te

x*(t)‘ — argmin (](x(t)) :J g(x(t),)'c(t),t)dt) s.t.

te(to, te] to
x(to) = xo,

x(tf) = x¢ (various terminal conditions )

Variation
SJ(x(t), dx(t)) =g(x(tr), %(tr), t) Ots + gx(x(te), % (ts), tr) Ox(ts)+

j: (g (x(1), %(1), 1) — S galx(1),%(1), 1)) 8x(t) dt

@ Both tf and x(t¢) are specified and are given
o In this case &t; = 0 and 6x(t;) =0

o J(x(t), 5x(1)) = [1{ (9 (x(t), X(1), 1) = gux(t), X(1), 1)) Sx(t) dt =0 =

the (first order) necessary condition for a maximum or minimum

—gx(x(t),x(t),t)=0 Euler Equation




Final time is specified but x(t¢) is free

Variation

SJ(x(t), 0x(t)) =g(x(te), %(tr), tr) Ots + gx(x(te), x(tr), te) Ox(ts)+

o : d : .
Jo, (60500 = Frax(x(0). %0, 9) ox(0) at

@ Final time t¢ specified, but x(t¢) is free
o In this case oty = 0, butdx(t¢) #0
o BJ(x(t), 0x(t)) = gx(x(tr), x(tr), te) Ox(t)+
(90, %0, 1) = Loa(x(8), (6, 1)) ox(t) dt =0 =

the (first order) necessary condition for a maximum or minimum

0x(x(£), K(£), 1) = <= g2 (x(£), (), £) = 0
gx(x(t), x(tf), tf) =0, tg is known,

x(0) = xo




Free terminal time: both final time t; and x(t¢) are free

x(1)
Sx(tf) #0, 8tf#0
Oxf # dx(tr),
Sxg R Ox(te) + x*(te)dts

= Ox(tf) = &x¢ — x*(tg)0ty,
substitute in §J(x(t), 8x) to obtain:

[ o o A
8] (x(t) BX)ZJ {(gx agfc)‘5X(tJ}dt+gi(X(tf),X(tf)vtf)‘5X(tf)+9(x(tf)*(tf)ythétf—
to
te dgx X - . RPN L, _
J(gx* dt)-5X(t)dt+gx(X(L,),x[h],t()~Z>x,+(g{x{l[\,,‘<\lJ},l(\7g)g\x\t|\.?<il‘\‘l1\-x‘il‘\)OI,:O
to
Any extremum x*(t) should satisfy
99 (1), x* _ 9099 sty 1 _
29 (xn(6), %4 (1), 1) — - [52 (x(£), %* (1), 1)) = 0

x*(to) = xo,

depending on the relationship between x(t¢) and ty, different set of terminal boundary
conditions are obtained

© Unrelated
@ related by x(tf) = O(t)
© constrained relationship m(x(tf), tf) =0




Free terminal time: both final time t; and x(t¢) are free and unrelated
x(1)

L= 5x(te) #£0, 8ty #0
T dxr # 8x(tr),
bxy Sxg A Ox(ts) + x*(te)dts

t .
87 (x(t), 5%) :L:(gx—ddgg)-w(t)dw 95 (x (L), % (L), tp) - Sxp+

(gOe(te), % (te),tr) —gx (x(te), X (te) ) - X" (tr)) 8tr =0
Any extremum x*(t) should satisfy

1- t; and x(t;) are free and unrelated=- 5t; and &x¢ are independent and arbitrary

G sy ox d .99 .y ox _
a(x (1), % (t),t)fd—t a(x (t),x*(t),t)] =0,
x*(to) = xo,

gx (x(tg), x(te),tr) =0,

g(x(te), x(te),te)—gx(x(te), x(te), te) -x*(tf) = 0.




Free terminal time: both final time t; and x(t¢) are free but related

through x(t¢) = O(ty)

xu)

fl_L 6X(tf) #0, Oty 760

X ———— Pl Texpa

“ﬂ‘ Ox¢ # dx(tf),
Oxg & dx(tf) + x*(ts)ots

6(2), the locus
of admissible

| values for x(t/)
! 1 X(tf):®(tf) =>5Xf:céf?t 6tf
b 1o+ 61 f
final time and final state are fre[e,/but ?elated
tr dgs o de
5](x(t),5x]:J (9x— 0 -8x(t)dt + (gs e (o), X (1. t)- S|+
to ty

g(x(te), x(te) tr) ggf[x(m,knﬁn)m-w*t’tr?)Btrzo

Any extremum x*(t) should satisfy

 dO

g(x(te), x(tg),te) gdx(tﬂ,k(tl),tl]-(a . x*(tf)) = 0. (Transversality condition)
.



Free final time but fixed and pre-specified final state

x(t)

t¢ is unknown.
5x(ts) is neither zero or free, it depends on
Sty £0
Ox(tf) + x(te)dty =0 (see the fig)
6X(tf) :7‘).((tf)6tf, Stf#o

fo tr o+t

te
5](x(t),6x):J {(g f:—tg;{)'éx(t)}dtJr(yt'x\’lJi,kﬂl,],l(‘\ gx (x(te), x(te), te) x(te))dty =0
t

The first order necessary conditions are

9g " d 9g, . " _
a(x (t), x*(t), )_E[ﬁ( (t), x*(t),t)] =0,
x*(to) = xo,
x*(tf) = xs,

g™ (), x* (), te) — gu (x*(te), X* (), te) - X* (tg) = 0.




Constrained terminal states

Determine vector function x*(t) in the class of functions with continuous first derivative that is
a local extremum of

tr
J(x(t),t) = h{x(ts), tr) + L g(x(t), %, t)d(t)
0
and respects
x(to) = xo,
m(x(ts), tf) =0, tf can be free.

@ use Lagrange multiplier v to obtain the augmented cost functional
te
Ja(x(t),t) = h(x(ts), tr) +vIm(x(te), tr) +J g(x(t), x, t)dt
to
o when constraint is satisfied ] and ], are the same

@ Invoke Fundamental Theorem of Calculus of Variation: 8], =0

o The variations are in dx, v, 6x(t¢), and dt¢ (they are not all independent
from one another).



Constrained terminal states

@ The variations are in &%, 6%, 6v, &dx(t¢), and &t¢

8Ja =hx(te)dxs + he, Ste + m(te) T8V + v (M (te)dxs + M, (te)Ste)+

te
J [QXSX—F gxéx]dt—l— g(tf)étf
to

@ The variations are not all independent from one another

. d
ox = aéx,

6Xf = 5X(tf) +7‘C(tf)6tf,

8Ja =[x (tr) + v my(t) + gzloxr + [he, + v me, (t6) + g(te) — gz (tr)%(te)]ot+
T < tr d 5xd
m (tf)bv+Lo [gxdx — ag*]bx t
@ Let w(x(te), v, te) = h(x(ts), te) + v m(x(te), te)
o

SJa =Iwx (tf) + gxloxs + [we, + g(ts) — gr(te)X*(te)lote+
te

d
mT(tf)5v+J [gxdx — —gxloxdt
6 dt



Constrained terminal states

8Ja =Iwy (te) + gxloxs + [we, + g(te) — gx(te)X(te)lote+
te

mT (te)ov +J [gxdx — ig,ﬂbxdt
t0 dt

first order conditions for extremal solution

ag(x(at)z,x, LI :T[ag(x(ati,x, t)] =0, (n dimensional)
x(to) = xo, (n dimensional)
m(x(tf), t¢) =0, (m dimensional)
wy (tf) + gx =0, (n dimensional)
wi, + g(te) — gz (te)x(ts) =0, (1 dimensional)

@ t is fixed we lose the last condition in the box above
@ ty is fixed, x(t¢) is free, then there is no m and no need for vand w =h

@ see Kirk (Ref [1]) book for various other conditions



