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Objective of control theory

Control theory is a branch of applied mathematics that involves basic principles
underlying the analysis and design of (control) systems/processes.
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The objective in control theory

@ stabilization, regulation, tracking

@ Impose performance on system behavior.

Optimum cruising altitude:
500 kg less CO,

Continuous descent:
300 kg less CO,
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Optimal control

» Performance measures considering step or ramp response:

® rise-time (t,)
® settling time (ts)
® peak overshoot (Mp)

® gain and phase margin and
bandwidth

® steady state error

mostly for SISO systems

y(t)
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Optimal control

» Performance measures considering step or ramp response:

mostly for SISO systems

y(t)

® rise-time (t;)

® settling time (ts)

® peak overshoot (Mp)

® gain and phase margin and
bandwidth

® steady state error

» In this course:
® more complex performance measures, perhaps more closely related to the
physical aspects of the system
B minimum fuel
B minimum control effort
B minimum time
® satisfy some constraints on control and states of the system while optimizing
performance measure
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Optimal control

The objective of optimal control is to determine the control signals that will
cause a process to satisfy the physical constraints and at the same time minimize
(or maximize) some performance criterion.

The following three elements constitute the optimal control formulation|:

@ model (a mathematical description) of the process/system to be controlled
@ mathematical description of the (physical) constraints of the system

@ a performance measure and its mathematical description
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Performance measures

@ Minimum-time problem: To transfer a system from arbitrary initial state
x(tg) = x¢ to a specified target set 8 in minimum time
te
]:tf—tO:J dt, (1)

to

where t¢ is the first instant of time when x(t) and § intersect.
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@ Minimum-time problem: To transfer a system from arbitrary initial state
x(tg) = x¢ to a specified target set 8 in minimum time
te
]:tf—tO:J dt, (1)

to

where t¢ is the first instant of time when x(t) and § intersect.
For discrete-time systems, minimum-time performance can be cast as

=N = Z::_OI 1.

5/13



Performance measures

@ Terminal control problem: to minimize the deviation of the final state of a system
from its desired value r(t;) € R™
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@ Terminal control problem: to minimize the deviation of the final state of a system
from its desired value r(t;) € R™

J= Z?zl(xi(tf) —1i(te)? = (x(te) = r(te) Tx(te) = v(te)) = [[x(te) — r(te) [

e Both positive and negative deviations are undesirable.
o Given the system model and the constrains, x(t¢) = r(ts) may not be

accomplished.

Missile at time ¢

® ()

A ballistic missile aimed at target S.

o In this case, we may wish to put more weight or penalty on the deviation of
certain state more than others.
J = (x(te) = (te)) T H(x(te) = v(te)) = [Ix(te) —(te) I}, H=0, 6/13



Performance measures

@ Minimum-control-effort problems: to transfer a sys. from an arbitrary initial state
x(to) = xo to a specified target S, with a minimum expenditure of control effort.
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e For a space craft (u(t): thrust of the engine), the minimum-control-effort

= J u(t)]dt.

For a discrete-time system
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e For an electric network without energy storage element (u(t): voltage source)

J= r W) dt

to

For several control inputs, we can write the cost function as

te te
]= J u’ (t)Ru(t) dt = J [lu®)|2dt, R>
to to
For a discrete-time system:
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Performance measures

@ Tracking problem: to maintain the system state x(t) as close as possible to the
desired state r(t) in the interval [tg, t¢]:

J:J "(x(6) = (1) T (DQUx(b) — r(t)) dt :J ") - r©[E dt, Q0

to to
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Performance measures

@ Tracking problem: to maintain the system state x(t) as close as possible to the
desired state 7(t) in the interval [tg, t¢]:

te te

J= J (x(t) = (1)) T ()Q(x(t) — r(t)) dt = J Ix(t) =r(t)[5dt, Q>0
to to
reasonable if constraints includes [ui(t)] <1, ie{1,..., m}
Otherwise may result in impulses in control and its derivatives

= j (Ix(0) — 10 By + ()2, dt,

to

remove the hard control bounds from problem formulation or conserve energy while maintaining tracking

te
J= [x(te) —r(te) [, +J (IPe(t) = (DI 0 + I()llre)) dt.
_
states be close to their desired value at final time to

1 1 «—N-1
J= EXLHXN t3 Zk:o (O = m1) T QUxic — 1)+ Ru) .

for a discrete-time system

@ Regulation problem: v(t) =0 for all t € [tg, t]
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Performance measures

All the performance measures discussed above are special cases of the general form

@ Continuous-time

te

J= h(x(tf)vtf)‘f'J' g(x(t), u(t), t)dt.
———

. to
terminal cost

running cost

@ Discrete-time

J= Gl N+ Y L wedt.

terminal cost

running cost
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Optimal Control Problem

Find admissible u* which cause x = f(x(t), u(t), t) to follow admissible x* that minimize

te

T = hx(te). tr) + J g(x(t), u(t), )dt.

to

10/13



Optimal Control Problem

Find admissible u* which cause x = f(x(t), u(t), t) to follow admissible x* that minimize

te

T = hx(te). tr) + J g(x(t), u(t), )dt.

to

- u*: optimal control x*: optimal trajectory

I = (e, )+ | gl (0w o)
< hx(t), ) + th g(x(t)u(t), t)dt, ucll, xeX.

to

10/13



Optimal Control Problem

Find admissible u* which cause x = f(x(t), u(t), t) to follow admissible x* that minimize

te

T = hx(te). tr) + J g(x(t), u(t), )dt.

to

- u*: optimal control x*: optimal trajectory

I = (e, )+ | gl (0w o)
< hx(t), ) + th g(x(t)u(t), t)dt, ucll, xeX.

to

@ We are looking for global minimum

o Find all local minimum, and pick the smallest as global minimum

10/13



Optimal Control Problem

Find admissible u* which cause x = f(x(t), u(t), t) to follow admissible x* that minimize

te

T = hx(te). tr) + J g(x(t), u(t), )dt.

to

- u*: optimal control x*: optimal trajectory

I = (e, )+ | gl (0w o)
< hx(t), ) + th g(x(t)u(t), t)dt, ucll, xeX.

to

@ We are looking for global minimum
o Find all local minimum, and pick the smallest as global minimum
@ Solution is not unique

e con: complicates computational procedures

10/13
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Find admissible u* which cause x = f(x(t), u(t), t) to follow admissible x* that minimize

te

T = hx(te). tr) + J g(x(t), u(t), )dt.

to

- u*: optimal control x*: optimal trajectory

I = (e, )+ | gl (0w o)
< hx(t), ) + r g(x(t)u(t), t)dt, ucll, xeX.

to

@ We are looking for global minimum
o Find all local minimum, and pick the smallest as global minimum
@ Solution is not unique

e con: complicates computational procedures
o pro: choose among multiple possibilities accounting for other measures
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Parameter static optimization: when time is not a parameter in the problem

@ Unconstrained optimization

@ Constrained optimization
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Unconstrained optimization

u* = argmin F(u),
uerR™

where F: R™ — R is differentiable
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@ +y? z?

(definite) (semidefinite)
(&) (o)
(a) strong minimum, (b) weak minimum
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Unconstrained optimization

u* = argmin F(u),
ueR™

where F: R™ — R is differentiable

A point u* € R™ is said to be a Local (weak) minimum point of F over R™ if
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35

3

25

n

10

f(x) =2+ cos(x) + 0.5 cos(2x — 0.5) has multiple local and global minimizer. 1313





