
MAE270A: Concepts of Observability/Detectability for LTI Systems
Observer design for LTI systems
Observer-based state feedback design for LTI systems

Instructor: Solmaz Kia (solmaz@uci.edu), University of California Irvine

Problem setting. Consider the linear time invariant system{
ẋ = Ax+Bu

y = Cx+Du
, x ∈ Rn, u ∈ Rp, y ∈ Rq.

Previously, we saw that when (A,B) is stabilizable, the full-
state feedback can be used to stabilize the system.

To stabilize the system using full-state feedback, we must be
able to access all of the system’s states. Unfortunately, this is
not always possible.

Why can’t we access all
states.

There are various reasons that we may not have access to all
states:

• Cost: we access the system states through sensors. Sen-
sors can be expensive, and cost may limit what states
we can measure

• You may not have a sensor to measure every state

In this example, there is no sensor to measure xw. Also,
the sensor that we have measures rw rather than r.

• Sensors you have measure combination of the states
and inputs

States and control inputs are, respectively, x =

[
α
q

]
and u = δ. Thus, C =

[
0 1
Zα 0

]
and D =

[
0
Zδ

]
.

The acceleration measured by the IMU is a linear
combination of a state and a control input.
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Definition: Observability

Observability refers to determining x(0) from the future inputs and outputs u(t) and y(t), t ∈ [0, T ] for
any finite T ∈ R>0.

Question of interest in Ob-
servability.

Can we reconstruct x(0) by knowing y(t) and u(t) over some
finite time interval [0, T ]? We can use the initial condition
to calculate the entire state x(t) by solving the differential
equation ẋ = Ax+ Bu, and then use it in our state feedback
to control the system.

Observability Gramian. Some analysis:

y(t) = CeA tx(0) + C

∫ t

0

eA (t−τ)Bu(τ)dτ.

We assume that we have access to y(t) and u(t):

y(t)− C

∫ t

0

eA (t−τ)Bu(τ)dτ︸ ︷︷ ︸
ȳ(t): known

= C eA t x(0)︸︷︷︸
unknown

.

Let’s multiply both sides of the equality above eA
⊤tC⊤:

eA
⊤tC⊤ ȳ(t)︸ ︷︷ ︸

Rn

= eA
⊤tC⊤ CeAt︸ ︷︷ ︸

Rn×n

x(0)︸︷︷︸
Rn

.

Next, integrate both size over the finite time [0, t]:∫ t

0

eA
⊤τC⊤ ȳ(τ)dτ︸ ︷︷ ︸
known

= WO(t)x(0)

where

Observability Gramian : WO(t) =

∫ t

0

eA
⊤τC⊤ CeAτdτ. (1)

• Condition for observable system: unique x(0) can be
obtained

Rank(WO(t)) = n.

Unobservable system: a unique x(0) cannot be obtained

Rank(WO(t)) < n.

Unobservable subspace. Unobservable subspace of system (A,C) is Ker(WO(t)):

If x(0) ∈ Ker(WO(t)), then WO(t)x(0) = 0.
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Controllability/Observability
duality.

Recall the controllability Gramian for system (A,B):

Wc(t) =

∫ t

0

eAτBB⊤eA
⊤τdτ.

Consider a fictitious system (A⊤, C⊤) and form the controlla-
bility Gramian for this system

Wc(t) =

∫ t

0

eA
⊤τC⊤ CeAτdτ. (2)

Comparing the observability Gramian (1) with the control-
lability Gramian (2), note that the observability Gramian for
(A,C) is identical to the controllability Gramian for (A⊤, C⊤).

Duality: (A,C) is observable if and only if (A⊤, C⊤) is con-
trollable.

Duality allows to recycle the conditions derived controllabil-
ity and state feedback design for observability and observer
design. For example, (A⊤, C⊤) is controllable if and only if

Rank
[
C⊤ A⊤C⊤ · · · (A⊤)n−1C⊤] = n.

This condition is equivalent to RankO = n where

O =


C
CA
...

CAn−1

 (3)

By virtue of duality condition, then (A,C) is observable if and
only if RankO = n. As such matrix O is called observability
matrix.

Matrix algebra recall. For any matrix M ∈ Rp×q we have Rank(M) = Rank(M⊤).
Conditions for Observability

The n-dimentional pair (A,C) is equivalent to either of the conditions below

• The Rn×n ∋ WO(t) =
∫ t

0
eA

⊤τC⊤ CeAτdτ is nonsingular for all t ∈ R>0.

• RankO = n, where O is the observability matrix given in (3).

• Rank

[
A− λI

C

]
= n, for any complex number λ.

• Rank

[
A− λI

C

]
= n, for every eigenvalue λ of A.

• If in addition, all eigenvalues of A have negative real parts, then the unique solution of

A⊤WO +WO A = −C⊤C

is positive definite. The solution is called the observability Gramian and can be expressed as

WO =

∫ ∞

0

eA
⊤τC⊤ CeAτdτ.
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Unobservable LTI system:
Observable decomposition.

Suppose RankO = m ≤ n. This means that (A,C) is not ob-
servable. There exists invertible T s.t. x̄ = T−1 x transforms
state equations to ˙̄x = Āx̄+ B̄ u and y = C̄x̄+Du, where

Ā =

[
Ao 0
A21 Aō

]
︸ ︷︷ ︸

T−1AT

, B̄ =

[
Bo

Bō

]
︸ ︷︷ ︸
T−1B

, C̄ =
[
Co 0q×(n−m)

]︸ ︷︷ ︸
C T

, (4)

where Ao ∈ Rm×m, Bo ∈ Rm×p and Co ∈ Rq×m.

The similarity transformation matrix T is

T =
[

t1 t2 · · · tm︸ ︷︷ ︸

m vectors whatever

way that makes all

columns of T

linearly independent

| tm+1 · · · tn︸ ︷︷ ︸
n−m linearly

independent vectors that

spans the nullspace of O

]
.

• (Ao, Co) is observable.

• The transfer function of the system (A,B,C,D) is
G(s) = C(sI−A)−1B+D. For an unobservable system

G(s) = Co(sI −Ao)
−1Bo +D.

Detectablility. Recall the observable decomposition (4), where x̄ = (x̄o, x̄ō)
with x̄o ∈ Rm×m and x̄ō ∈ R(n−m)×(n−m). The observable
decomposition reads as{

˙̄xo = Aōx̄o,

˙̄xō = Aōx̄ō +A21x̄o +Bō u.

• Because (Ao, Co) is observable, we can construct x̄o(0)
and consequently x̄o(t) in finite time from knowing y(t)
and u(t).

x̄ō(t) = eAō t x̄ō(0)︸ ︷︷ ︸
unknown

+

∫ t

0

eAō (t−τ)(A21x̄o(τ) +Bō u(τ))dτ︸ ︷︷ ︸
known

.

When Aō is Hurwitz, we have eĀō t→0 as t→∞. This means

• x̄ō can be guessed to an error that converges to zero
exponentially fast.

Therefore we can have x̄ and x detectable as t → ∞. On the
other hand,

Unobservable eigenvalues. Suppose (A,C) is unobservable. The ‘unobservable eigenval-
ues’ of A are

• the eigenvalue that fail the PBH test.

• eigenvalues of Aō.

Detectability condition

The pair (A,C) is detectable if it is observable. If (A,C) is unobservanle, matrix Aō is Hurwitz or
alternatively, all ‘unobservable eigenvalues’ of A have negative real parts.
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State observer design. We start with an observation. We don’t know x(0), but we
know the system dynamics, so let’s see if we create a virtual
system {

˙̂x = A x̂+Bu

y = C x̂+Du

and initialize with x̂(0), which is not the same as x(0), what
happens. Let e(t) = x̂(t) − x(t). This error state evolve ac-
cording to

ė = Ax̂+Bu− (Ax̂+Bu) → ė = Ae, e(0) = x̂(0)− x(0).

• If A is Hurwitz e → 0 as t → ∞. This means that as t →
∞ (for some t > T ) we have x̂(t) → x(t) exponentially.

• Otherwise, e(0) ̸= 0 will not result to e(t) ̸= 0 after some
t > T .

Research question. • How to drive e → 0 as t → ∞ if A is not Hurwitz.

• Even if A is Hurwitz, the rate of convergence of e → 0
may be very slow. How to speed up the convergence?

Solution. Use ŷ − y as a feedback to guide e to zero and manage the
speed of convergence.

{
˙̂x = A x̂+B u− L (ŷ − y)

y = C x̂+Du
, (5)

where L is output injection matrix.

The error dynamics using (5) is

ė = (A− CL) e

• Choose L such that A− CL is Hurwitz

• Choose L to place the eigenvalues of A − CL in places
that will result in desired exponential convergence rate
for e → 0.

Research question. • When does a stabilizing L, i.e., L that makes A − CL
Hurwitz exists.

• If yes, how to design L to place eigenvalues of A − CL
at desired location {ν1, · · · , νn}.
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Take away for state observer design

• If (A,C) is observable, there exists an L ∈ Rn×q that can place the eigenvalue of A − LC at any
desired (symmetric complex pair) locations {ν1, · · · , νn}.

• For a detectable (A,C) let {λ1, · · · , λm} be the observable eigenvalues of A and {λm+1, · · · , λn} be
the observable eigenvalues of A. If (A,C) is detectable, then there exists an L ∈ Rn×q that can
place the eigenvalues of A−LC at {ν1, · · · , νm, λm+1, · · · , λn}, where {ν1, · · · , νm} are the desired
(symmetric complex pair) eigenvalue locations for moving the observable eigenvalue {λ1, · · · , λm}.

Observation.
eig(A− LC) = eig(A⊤ − C⊤L⊤).

Thus, if you design L⊤ to place eigenvalues of (A⊤ − C⊤L⊤)
at desired locations, it is equivalent to design L to place eigen-
values of (A− LC) at those desired locations.

State observer design. • Duality says that if (A,C) is observable, then (A⊤, C⊤)
is controllable.

• Recall the stabilizing state feedback control gain design
that made A − BK. The same methods can be used
to design L⊤ to make (A⊤ − C⊤L⊤) Hurwitz or use
the pole-placement methods to design L⊤ to place the
eigenvalues of (A⊤ − C⊤L⊤).

• Duality says that if (A,C) is detectable, then (A⊤, C⊤)
is stabilizable.

• Recall the stabilizing state feedback control gain design
that made A − BK when (A,B) is stabilizable. The
same methods can be used to design L⊤ to make (A⊤−
C⊤L⊤) Hurwitz or use the pole-placement methods to
design L⊤ to place the eigenvalues of (A⊤ − C⊤L⊤) at
{ν1, · · · , νm, λm+1, · · · , λn}.
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Research question. • When we do not have access to all the states x, can we
use the output y to stabilize the system?

Stabilization using output
feedback.

We want to stabilize the system using asymptotically con-
structed states, x̂. That is we want to use u = −Kx̂ in the
architecture below:

{
ẋ = Ax+B u

y = C x+Du

{
˙̂x = A x̂+B u

y = C x̂+Du
u = −K x̂. (6)

How to design K. To study whether the system (6) with output feedback u =
−K x̂ is exponentially stable, form the close-loop system ma-
trix with states x and e = x̂− x:[

ẋ
ė

]
=

[
A−BK −BK

0 A− LC

]
︸ ︷︷ ︸

Ā

[
x
e

]
. (7)

Note that since Ā in block triangular matrix, we have

eig(Ā) = eig(A−BK) ∪ eig(A− LC). (8)

• For Ā to be Hurwitz, we need to design K and L such
that all the eigenvalues of Ā have negative real parts.

• The separation on display in (8) presents a systematic
design for making Ā Hurwitz:

– Design K for stabilizing A − BK (using methods
for full state feedback design)

– Design L for stabilizing A−LC (using the methods
for state observer design)

Last observation. Note that [
x
e

]
=

[
I 0
−I I

]
︸ ︷︷ ︸

T̄

[
x
x̂

]
.

Because T̄ is invertible, T̄ is a similarity transformation ma-
trix. Therefore, the closed-loop system with states (x, e) is
algebraically equivalent to the closed-loop system with states
(x, x̂). If the pair (L,K) stabilizes the closed-loop system with
states (x, e), it will stabilize (x, x̂).
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