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Summary of previous lecture and today’s otutline

Cx(t) + Duf(t), ¢(Z§ )

G
Theorem (Variation of constants): The unique solution to .
above is given by

gy equation

t

x(t) = b(t, to)xo + J d(t, 1B(tJu(r)dr
y(t) = C) (L. to)xo + j () (t, 1)B(t)w(r)d + D(t)ult),

to
where ¢ (t, to) is the state transition matrix (as defined before).

yH) = COP(t to)x +j
—_————

C(t)dp(t, T)B(t)u(t)dt + D(t)u(t).

~ J/

homogeneous response ~-
forced response

Lecture 6 covers
* Review of eigenvalues and eigenvectors of a matrix

e Jordan form of a matrix

How to compute e“4t:

* Theith column of e4t is the solution of X = Ax, x(0) = ¢;

o et =L (sI — A1

Def(Algebraically equivalent) Two continuous-time LTI systems

() = Ax(t) + Bu(t),
y(t) = Cx(t) + Du(t),

are called algebraically equivalent if and only if there exists a nonsingular T s. t.
(A=TAT !} B=TB, C=CT !, D=D). The corresponding map x = Tx is
called a similarity transformation or an equivalence transformation.

A and A have same eigenvalues.

« Use of Jordan/diagonalized form to compute et
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Review of eigenvalues and eigenvectors of a matrix

Consider a matrix A € R*xmn
Ap = Ap,

@ A € C is eigenvalue iff we have p € C™*1, p # Onx1
@ Compute A\: A(A) = det(AI — A) = 0; has n roots = n eigenvalues

@ Computing eigenvectors: q # 0 such that (AI—A)p =0, i.e.,
q is in the nullspace of (AI — A),

@ Some of the properties of the eigenvectors

e When all the eigenvalues {Aq,- -, A} of a m X n matrix A are distinct
(multiplicity of all eigenvalues is 1), the nullity of (A;I — A) is equal to 1.
Moreover, the corresponding eigenvector set {p1, -+ ,pn} is linearly
independent.

o When A is an eigenvalue of A with multiplicity of m € [2, n], then we have
1 < nullity(AI —A) <m.
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Diagonalizable matrix

If A has only simple eigenvalues, it always has a diagonal form
representation, i.e., there exists Q such that

An eigenvalue with multiplicity
of 2 or higher is called a
repeated eigenvalue.

In contrast, an eigenvalue with
multiplicity of 1 is called a
simple eigenvalue.

— -1
] =0AQ
-
A, 0 0 O
0O A, 0 O
Api :Ai pi,i € {1,'”,n}—)Al[p1 pn]]: [pl pn] . 2 . .
Y : S
p L 0O 0 0 4,
|
A=p]p! Ji
When all the eigenvalues {A1, -+ , A} of a n X n matrix A are distinct
(multiplicity of all eigenvalues is 1), the nullity of (A;I— A) is equal to 1.
Moreover, the corresponding eigenvector set {py, - ,pn} is linearly
independent.

If A has a repeated eigenvalues, then it may not have a diagonal form representation. However, it has

a block-diagonal and triangular form representation.
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Diagonalizable matrix

If A has only simple eigenvalues, it always has a diagonal form
representation, i.e., there exists Q such that

— -1
] =QAQ
Q=P
Ay - 0
Aq; = A;jq;, i €{1,---,n} > A[P1 Pn]l=[P1 - pn]< : :
0 - A,
A=P]p1
1
When all the eigenvalues {A1,--- , A} of a n x n matrix A are distinct
(multiplicity of all eigenvalues is 1), the nullity of (A;I — A) is equal to 1.
Moreover, the corresponding eigenvector set {p1, -+ ,pn} is linearly
independent.

ACA) = det(A — A) = 0
AA)=AA+1)(A=2)=0
A=—1: (A—(—1)I)p1 =0,
A=0: (A—0I)p2=0,

A3 =2: (A—2I)p3 =0,

linearly independent {p1, p2, p3}

2 0 |o

P = 1 | —2 |1

—1( 1 |1

 —1]0]o0
A=P 0 [0o[0 |P!

0 [0 ]2

A's are district | )
@ the matrix is diagonalizable
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Jordan normal form

Theorem(Jordan normal form): For every matrix A € R™*™, there exists a nonsingular change
of basis Q € C™*™ that transforms A into

Ji 0 0 ... 0]
0 Jo 0 --- 0
J=QAQt=1|% © Js O —piag(yy, o g ).
0 0 0 - Ju
where each J; is a Jordan block of the form
Ay 1 0 ... 07
O A 1 - O
A ...
Ji = 0O O : 0
0 0 0 -+ A

= Ny Xny

@ For every eigenvalue A; of A, there is at least one Jordan block associated with

@ The number of Jordan block associated with each A; of A is equal to the nullity of
(A — A,

@ If A; is an eigenvalue with multiplicity of m; = 1, the Jordan block associated with it
is ]j = }\j
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Jordan normal form

Theorem(Jordan normal form): For every matrix A € R™*™, there exists a nonsingular

change of basis Q € C™*™ that transforms A into
0

where each J; is a Jordan block of the form

@ A, is an eigenvalue of A

A
0
0

0

1
A
0

P

0

J=QAQ =

0
1

A

Py

0

7, 0 0
0 J, O
0 0 Js
0 0 0

0
0
0

Ai

= Ny Xmny

0
0

Ilt_

= Diag(J1, J2. J3, - 1),

Attention: There can be several Jordan
blocks for the same eigenvalue, but in that
case there must be more than one

independent eigenvector for that eigenvalue.

@ 1, number of Jordan blocks: total number of linearly independent eigenvectors of A

@ | is unique up to a reordering of the Jordan blocks

@ | is called Jordan normal form of A
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Diagonalizable matrix

@ An eigenvalue with multiplicity of 2 or higher is called a repeated eigenvalue.

@ In contrast, an eigenvalue with multiplicity of 1 is called a simple eigenvalue.

e If A has only simple eigenvalues, it always has a diagonal form representation.

e If A has a repeated eigenvalues, then it may not have a diagonal form
representation. However, it has a block-diagonal and triangular form
representation.

Def. (Semisimple) A matrix is called semi-simple or diagonalizable if its Jordan
normal form is diagonal.

Theorem Fo an n X n matrix A, the following statements are equivalent:

» A is semi-simple.
» A has n linearly independent eigenvectors.
» For any A; of A with multiplicity of my, we have nullity(A;I — A) = mj.
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One of the methods to determining the Jordan normal form

© Compute eigenvalues of A

@ List all possible Jordan normal forms that are compatible with the eigenvalues
of A:

e eigenvalues with multiplicity equal to 1 must always correspond to 1 X 1
Jordan blocks

e eigenvalues with multiplicity equal to 2 can correspond to one 2 x 2 block or
two 1 x 1 blocks

e eigenvalues with multiplicity equal to 3 can correspond to one 3 X 3 block ,
one 2 X 2 and two 1 x 1 blocks, or three 1 x 1 blocks, etc.

© For each candidate Jordan normal form, check wether there exists a
nonsingular matrix Q for which ] = QAQ~!. To find out wether this is so,
you may solve the (equivalent, but simpler) linear equation

JQ = QA

for the unknown matrix Q and check wether it has a nonsingular solutions.
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Jordan normal form

A a b5 x 5 matrix with a simple eigenvalue Ay, and A, with multiplicity of m = 4

Jinvertible Q: J=Q *AQ
A | O0O]lOo]o]oO A0 00 0 A0 0 0 0 7
0 | Az 0 0 0 0 | Az 1 0 0 0O | A2 1 0 0
J=|" 00 [A 0O 0|0 A 0 0|0 A 1 0
0 0] 0 ]A]O 00 0 A 1 0|0 0 A 1
BRI 0|0 0|0 A 010 0 0 Al
nullity (AT — A) = 4 nullity (AT — A) = 2 nullity (A2l = A ) =1
0 [A2] 0|0 0 0O [A]0 0 0
] = 0 O | A ]| O 0 0 0 [ A 1 0
olo o0 [A 1 01 0]0 A 1
0| 0] 0] 0 A 0100 0 A

nullity (A, — A) = 3

nullity(Ao1 — A) =2
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A(A) = det(Al —A) =0

AA)=AA+1)(A—=2)=0
Ai=—-1: (A—(=1))p1 =0,
)\2202 (A—OI)]:)QZO,
7\3:22 (A—2I)p3:0,

linearly independent {p1, p2, p3}

A's are district .~ ]
@ the matrix is diagonalizable

@ the Jordan form is a diagonal matrix

Diagonal Jordan form: example

}\1 =—1:
}\2 = 2, with Moy = 2,
note that nullity(A — 2I) = 2, therefore
two linearly independent eigenvectors exist for A; :
(A—2I)p2=0, (A—-2I)p3=0,

linearly independent {p1, p2, p3}

1 o] o —1]l01]0
P=| —1|1|0 | andA="P 0 2o | Pt
0 |o]|1 0 |02
J with ‘(S:P*1
Recall that

@ The number of Jordan block associated with each
A; of A is equal to the nullity of (A — A;I).
if for every A; with multiplicity m; > 1, we have
nullity(A — Al) = m

@ the matrix is diagonalizable

@ the Jordan form is a diagonal matrix

3 15 =2
A=10 2 0
1 125 0

A(A) = det(Al —A) =0
A(A) =(s—2)*(s—1)=0
M=1. (A-Dp,=0.

A, = 2, with multiplicity m, = 2,
nullity of (A — 2I) = 1, therefore, only one
linearly independent eigenvector exists for
Ay =2, (A-2Dp, =0

[1 0 0]
J=10|2 1
0 0 2
To find Q that satisfies ] = QAQ ™!

JQ = QA4,
[ q11 d12

, we solve

431
2421 + Q31 2Q22 + Q32 2qQ32 Q33

2431 243, 2433
[36111 +q13 1.5q11 + 2942 + 1.25q;3

—2q21
—2q31

= (3921 + @23 1.5¢21 + 2q22 + 1.25¢3

3931 + q33  1.5q31 + 2932 + 1.25¢53
which gives (solution is not unique)
—04082 —-0.4082 0.8165 ]

Q=[O.6727 —1.0328 —0.6727
0 0.1682 0

_2%1]
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Matrix exponential of two algebraically equivalent matrix

@ Let T be nonsingular
o Let A=TAT 1,

eA t TeA tT—l

Proof

AR = AAA - A = (TAT !)(TAT ). (TAT ) = TAFT

~"

k times

k times
At — t~ k — t~ AkT—1 = tk—k 1 AtT—1
e :];)HA :kOHTA T :T(];HA )T =Te T
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How to compute et using the Jordan normal form of A

I=QAQ‘1 — A=Q7Q,
A¥=AAA A =Q7'QQ'JQ---QJQ =Q'*Q

ktlmes ktlmes
eAt _iiAk_Q—lit_]kQ_
o | o k!
k=0 k=0
- 00 k -
AL 0 0
0 > ko T)s 0 0
0 0 ke T ]3 0 Q
L 0 0 0 T io 0 kl ]l_
-ellt O O . e O 7
0 el2t 0 . 0
_ Jst ...
— Q 1 0 0 e 0 Q
0 0 0 elit]
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How to compute e4t using the Jordan normal form of A

A, 1 0 .- 07
J; = 0 0 Ay --- O
O 0 O A
B ‘Tl.'lXT\..-L
B 2 3 ni—1
o 2_2' 5%.—_1;!
1 t trl'l—
Claim: |elit = )it (ni.—3)'
O 0 O 0 t
0 0 0 O 1

How can we verify the claim made above?
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How to compute e4t using the Jordan normal form of A

Verification: we show that eli is the transition matrix of J; (e/i = ¢(t,0)) by showing

that it satisfies {

£d(t,0) =Jid(t,0)
®(0,0) =1. That is

@ eJi% =1 (this is trivially satisfied)

d
® I

d

ae

it

7\'l't d

~dt
0 1

0
0 0

elit = J;elit

Jit

_ e N

t“i_2 m
(Tli—Z)!
tn~1—3

(m,—3)!
t“i_4

tni_l T
(m;—1)!
tn-l—2
(m;—2)!

t“i_3

)\ie]"t—l—

— AieAit

o

—

— e N

eJit— Ji

m;—1)!

t“i_l N

t“i_2

(ni—2)!
tni_3

Mt
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How to compute e4t using the Jordan normal form of A: examples

Al olo o o0
0 M| 0 0 O
00 |A 1 O
000 A 1
0/0|0 0 A
AMlO 0 0 0
0| A, 1 0 O
010 A 1 O
0/0 0 A 1
00 0 0 A

= et =

= et =

eMt | 0 0 0 0

0 |eMt| 0 0 0

0 0 | efet gelet %ze)‘ﬂ

0 0 0 elet  gehet

0 0 0 0 eM2t |
Mt |0 0 0 0
O e)\zt te)\zt %e)\gt %e)\gt
0 0 elet  gelet %eMt
0 0 0 et tehet
0 0 0 0 ehat
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How to compute e“’" using the Jordan normal form of A: examples

0 0 0 —1 0 0
A= |1 0 2 A = 3 2 0
0 1 1 0 0 2

A(A)=A(A+1)(A—2)=0

Ap=—1: (A—(—1)I)p; =0, Ay=—1: (A—=(-1Dp; =0

Ay =0: (A —0I)py =0, Ap =2, with my =2,
Az =2: (A —2I)p3 =0, note that nullity( A —21) = 2, therefore
two linearly independent eigenvectors exist for A, :

linearly independent {p,p,.p3} e
o o o linearly independent { }
mnear mnaepenaen q 5
Al pi | P2 | p3 ]=[pPi|P2]|wP3 ][O 0 0 y indep P1.P2.P3
2 0 —1 0 0
Al p1 | P2 | P3 ]=[»P1 | P2]| Pz ]|lO 2 o0
1 E o o 2
2 o | o 2 0 0 _
P = 1 —2 |1 |,pt=) 1 1 1 " o 1 o Lo o
—1 1 1 1 1 3 P=| —1|1]o0 p~l=|1 1 o
6 3 3 o o 15 5 ¢
—1]o0] o _ ‘
A=P| 0 |00 |PL 1 ]o0]o B
0 0 2 A =P 0 2 0 P
> g 0 [0 |2 |
with Q=pP—1 g
: ° J with Q=p—1
- —t l
2 0 0 e o] o 0 0 L
At _| 1 o 1 0 1T 0 f -1 1 AL 1 0] o e 0 1 0 0
—1 1 1 0 0| e?t i 1 3 eM=| —1 |10 0 o2t 0 1 1 o
- . 6 3 3 0 0| 1 o 0 | o2t 0 0 1
P -~ s 0
p—1 = =
) . . .
—
2t —t t 2t 2t —t e 0 0
— | —2e—+1 26 e 2e  2e I P ’
et €2t 1 €2t et et pe2t 0 0 e2t
L3 6 2 3 3 3 3
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