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Summary of previous lecture and today’s outline

We want to study the properties of solutions to SS LTV systems
x(t) = A(t)x(t) + B(t)u(t),
y(t) = C(t)x(t) + D(t)u(t)
(t) :

A(t):[0,00) — R™™ B(t):[0,00) = R™ P, C(t):[0,00) — RI*™,
D(t): [0,00) — RI*P,

P1. For every to, d(t, to) is the unique solution of
d
E(b(tvto):A(t)d)(tvtO)l d)(tovtO)ZIv t>t0

P.2 For evert fixed tg, the it" column of ¢ (t, tg) is the unique solution to
x =A(t)x(t), x(to) =ejy, t2=to,
where e; is the it" column of identity matrix I,,, or equivalently a column vector of all
zero entries except for the it" which is equal to 1.

P3. For every t, s, T we have
b (t,s)Pp(s, ) = d(t, 1)
This property is called the semigroup property.

P4. For evert t, T, ®(t,to), is nonsingular and

d(t, ) =d(T,1).
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Theorem (Variation of constants): The unique solution to LTV SS equation
above is given by
t

x(t) = d(t, to)xo +J é(t, T)B(t)u(T)dT

to
t

y(t) = C(t)d(t, to)xo +J C(t)d(t, 1)B(t)u(t)dt + D(t)u(t),

to
where ¢ (t, to) is the state transition matrix (as defined before).
t

y(t) = C(t)d(t, to)xo —l—J C(t)dp(t, 7)B(t)u(t)dt + D(t)u(t).
—_———

to

\

homogeneous response
forced response

Lecture 5 covers
e Solution of LTI systems
* Properties of matrix exponential

e Cayley-Hamilton Theorem
« Methods to compute e4t




Solution of an LTI system

We want to study the properties of solutions to SS LTI systems

%(t) = Ax(t) + Bu(t),
y(t) = Cx(t) + Du(t),

AecR™" BeR"™P, CeRI*™, D e RI*P. Start by study of

homogeneous linear system: x = Ax(t),

x(tg) =x0 € R™, t > tg9. (1)

Theorem (Peano-Baker Series). The unique solution to (1) is given by

x(t) = d(t, to)xo, (2)

t Tl

t t Tl "L'2
b (t, to):I—|—J AdTl—l—J AJ AdngTl—l-J AJ AJ AdTtidTodT)+- - -
to to to 0 to

t to

t t T1 t T] T2
:I+AJ dTl+A2J J dngT1+A3J J I il e
to tg Jto to Jtg Jitg

,  (t—t0)® 5 (t—to)® . e (t—to)*
T AT AT g ANk AR = ) A

¢(t, tO) = eA(t—tO)

® k
pAlt—to) — z (t —to) Ak
k!
k=0
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Properties of the transition matrix of and LTI system

P1. For every tg, ¢(t, ty) is the unique solution of

d

ad)(t,to) =A[t)d(t to), d(to,to) =1 t=>to.

e LTI: The function et is the unique solution of

d
dt

_eAt - AeAt,

A0

S

L

t > 0.

P.2 For evert fixed tq, the it" column of ¢ (t, tg) is the unique solution to

x = A(t)x(t),

x(to) = ei,

t > to.

o LTI: The it" column of et is the unique solution to

x = Ax(t),

P3. For every t, s, T we have (semigroup property)

$(t,s)d(s, T) = d(t, 7).

@ LTI: For every t, T € R

AT At At AT A(t+T).

e € =€ € =€

P4. For evert t, T, ¢(t, 1), is nonsingular and

d(t,T) = d(t,t).

o LTI: For every t € R, the function e™! is nonsingular and

(e

At)—l

=€

x(0) = ey,

But in general e

—At

t>0.

AteBt ?é e(A+B)t_
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Cayley-Hamilton

Notation: For a given polynomial
p(s) =aos™ + a;s™ P+ as™ 4+ +an_1s+ an
and an n X n matrix A, we define
P(A) = apA™ + A+ AT P 4+ o+ an A+ anlisn,

which is also an n X n matrix.

Def (Characteristic polynomial of an n X n matrix A):
A(s):i=det(sI—A) =s"+a;s™ 1+ as™ %+ -+ an_15 + an.
Theorem (Cayley-Hamilton). For every n x n matrix A,

AA) =A"+ g, A+ A" 2+ o+ ap 1A+ anlixn = Onxn.

Corollary of the Cayley-Hamilton Theorem: For any given n x n matrix, for any k > 0,
AX can be written as linear combination of {A™1 A™2 ... A L ..k
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Properties of the transition matrix of and LTI system

Corollary of the Cayley-Hamilton Theorem: For any given n x n matrix, for any k > 0,

A¥X can be written as linear combination of {A™ 1, A" 2 ... A I, xnlh
® P5. For evert n x n matrix A, there exist n functions og(t),x;(t), - -,xn_1(t) for
which

n—1

M=) ()AL, VteR
1=0

@ P6. For every n X n matrix A,

Ae = MA VieR.

%em — AeM = eMA, Vit e R
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Properties of the transition matrix of and LTI system

@ P1. For every tg, d(t, tg) is the unique solution of

%cb(t, to) = A(t)b(t to), (toto) =1, t>

o LTI: The function et is the unique solution of

%e’\t —Ae™ M =1 t>0.
@ P.2 For
L [ieAt] =L[AeM] &
o LT dt
sLe?t] — e =AL[NMN] &
@ P3. For sl [eAt] — [ =AL [eAt: ~
Aty __
o LT (sI—A)L[e™] =]l &

L[eAt] = (sI —A)_l & Mt — L—l[(sl . A)_l]

to.

@ P4. Forevert t, T, ¢(t, T), Is nonsingular and

d(t, )t =d(T, 1)

o LTI: For every t € R, the function e”! is nonsingular and

At)—l —At.

(e —e
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Some note on computing L‘l[(sl — A)_l]

eM = L7Y(sI— A)7Y

fig1(s) ﬁl,n(S)
polynomials with order ; ;
(sI— A)! of at most n — 1 fin1(s) -+ AAnn(s)
S1 — = — - _
det(sI — A) (s —A1)™1(s — Ap)™M2 vt (5 — A )Mk

Ai an eigenvalue of A with multiplicity of my, i €{1,..., k}

(notice my +my + -+ + My =n)

Every entry of (sI —A)~!

i ;(s) L Bis™ T 4 Bas™ 24+ Br1s + Bn
(s =A)™i(s —A)™M2 - (s — A )™k (s —Ag)Mi(s —Ag)M2 .- (5 — A )™
a1 a1 m, a1 Ak, my
(s — A1) (s —Ay)™ (s — Ax) (s — Ay )M
Use . .
£—1 —¢n —at’ t 2 0
[(S_I_ a)n—i—l] nl €

= e% sin(bt)

= e cos(bt)
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eAt = £L71[(sI — A)71]: example

0O 0 O
Compute et for A= |1 0 2|. The eigenvalues of A are {0, —1,2}.
o 1 1
S 0 0
sl —A=|-—1 S —2 |, det(sl —A)=(s—0)(s+1)(s—2)=s(s+1)(s—2)
0 -1 s—1
[s2 — s —2 0 0
(sI—A) 1= L s—1 s2—s 2s
s(s+1)(s—2) ] 1 s 2
1 (s —2)(s +1) 0 0
— (s—1) s(s—1) 2s
s(s+1)(s—2) ] 1 s s2
i . 0 0
s—1 s—1 2
- s(s—|—1%(s—2) (s—|—1)1(5—2) (s—l—l)‘(s—2)
L s(s+1)(s—2) (s+1)(s—2) (s+1)(s—2)
[ 1 0 0
3 _ 3 g 5 3 = 5
= s s—+1 + 52 (s+1) + (s—2) (s+1) + (s—2)
3,4 .4 2,0 -
STttt s> st s s+ T 52 For mor examples check out
. . . https://tinyurl.com/wfc75cbm
erM =L (sI-A) =] 1 —-2e7t 4 Ll Zemt 4 le2t _Ze—t g Ze2t
—1 4+ let 4+ Lt ze 4 1e?t et Ze2t
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A brief review of some relevant concept and
theory from linear algebra



Eigenvalues and eigenvectors of a matrix

Consider a matrix A € C*™,
Ap = Ap,

o A € C is eigenvalue iff we have p € C™*!, p £ 0,51
@ Compute A: A(A) =det(AI — A) = 0; has n roots = n eigenvalues

@ Computing eigenvectors: q # 0 such that (A —A)p =0, i.e.,
q is in the nullspace of (Al — A),
@ Some of the properties of the eigenvectors

e When all the eigenvalues {A;,--- , A} of a n X n matrix A are distinct
(multiplicity of all eigenvalues is 1), the nullity of (A;I — A) is equal to 1.
Moreover, the corresponding eigenvector set {py,--- ,pn} is linearly
independent.

o When A is an eigenvalue of A with multiplicity of m € [2,n], then we have
1 < nullity(AI—A) <m.
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Basic definitions from linear algebra

The set of vectors {x1,X5, -+ ,Xm} in R™ is said to be linearly dependent if
and only if there exists real number «;, -, x;y not all zero such that

061X1+062X2+°"—|—06mxm:0 (1)

If the only set of «;'s for which (1) holds is 63 = xp = -+ = ¢,y =0 then
the set of vectors {x1, x5, ,Xxm} is said to be linearly independent.

The dimension of a linear space can be defined as the maximum number of
linearly independent vectors in the space. Therefore, in R™, we can find at
most n linearly independent vectors.

Basis and representation A set of linearly independent vectors in R™ is
called a basis if every vector in R™ can be expressed as a unique linear
combination of the set. In R™, any set of n linearly independent vectors can
be used as a basis.

Rank of a matrix is the number of linearly independent columns of a matrix.
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Solution of Ax =y
Theorem: Ax =y, A € R™™*™ and y € R™*! are given matrices

@ A is nonsingular (inverse of A exisits)

o for every y, x = A~y is the unique solution

o for y = 0,,x1, x = 0 x1 is the unique solution

@ Ax =0, x #0 if and only if A is singular

e nullity of A: number of linearly independent solutions of Ax =0

1 2 3 1 2 3 2 0
A=|3 6 51, 3 6 5| |—-1f{ = (0],
-1 -2 0 -1 -2 0 0 0
Nullity: 1
1 2 -1 1 2 -1 2 0 1 2 —11 (O 0
A=13 6 -3, 3 6 3| |(—-1| = 1|0}, 3 6 —3| |1{ = |0
-1 -2 1 -1 -2 1 0 0 -1 -2 1 2 0

Nullity: 2
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