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Summary of previous lecture and today’s o utline

Theorem: Let y be an output corresponding to a given input u of a linear
system. All outputs corresponding to u can be obtained by

Linear system
u(t) Physical system y(t)

X(t) = AX(t) + BU(t), h/ ’f\E:>Response:zero—input response + zero-state response
y(t) = Cx(t) + Du(t). . — Black Box |—> t Y =1 + Y
!

To construct all the outputs due to u:

Input-output description (Impzulse response) < | Find one particular output corresponding to the
relaxed and linear : y(t) = fto G(t,tn)u(r)dt, Vt =0 input u and zero initial condition.

relaxed and linear time-invariant: y(t) = ftto Gu(t—1)dt, Vt =0

*  Final all outputs corresponding to the zero input.

Input-output description in Laplace domain
9(s) =G(s)n(s), Vt=0

Lecture 4 covers
» Zero-state equivalence

G(s) =C(sI—A)"1B+D * Algebraically equivalent LTI systems
e Solution of LTV systems
t * Solution to Homogeneous Linear
y(t) =P (t)x(0) + Jo G(t —1)u(Tt)dT, systems

* Transition matrix and its properties

G(t) =L G(s)], W(t) =L TR(s)].

SS & Rational TF
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Def(

Zero-state equivalence):

Zero input equivalence

Two state-space systems are said to be zero-state

equivalent if they realize the same transfer function, which means that they
exhibit the same forced-response to every input. Zero-state equivalent systems
does not necessarily are of the same dimension. The following SS forms are

ZEro-

state equivalent.
—45 0 | -6 0 |—-2 0 -1 0 -
O 45| 0 6|0 -2 0 1
1 0 0 0|0 O g_ |00
0 1 0 0|0 O ~ |10 0
0 0 1 0|0 0 0 O
0 0 o 1|0 o0 | [ 0 0 .
—6 3|24 75|24 3 D_[2 0
0 1|05 15| 1 05 — |10 0
—25 -1 0 0 1 0
~ 1 0o 0 O - 0 0
A= 0 0 —4 —4 B=10 1
0 0o 1 0 0 0
- -6 —12 3 6 - 2 0
€= l 0 05 1 1 ] b= [ 0 0 ]
C(sI—A)"'B+D=C(sI—A)'B+D
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Zero state responses of two zero-state
equivalent system are the same!




Algebraically equivalent LTI systems

Consider
x(t) = Ax(t) + Bu(t),
y(t) = Cx(t) + Du(t),

Given T nonsingular, apply change of variable X = Tx to write the system in the new
state X

(% = Tx=T(Ax(t) + Bu(t))=TAT ' i+ TB u(t)

4 A -y N X(t) = AX(t) + Bu(t)
y(t) = C()x(t) + D(u(t) =CT %+ D u(t) y(t) = Cx(t) + Du(t),
D

{

\

Def(Algebraically equivalent) Two continuous-time LTI systems

Ax(t) + Bu(t), . X(t) = AX(t) + Bu(t),
Cx(t) + Du(t), y(t) = Cx(t) + Du(t),

—
<
-~ =
1|

are called algebralcally equivalent if and only if there exists a nonsingular T s. t.
(A=TAT !, B=TB, C=CT !, D=D). The corresponding map X = Tx is

called a S|m||ar|ty transformation or an equivalence transformation.
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P1.

P2.

P3.

From rational proper TF to SS: Example (cont’d)

With every input signal u, both systems associate the same set of outputs y. However, the
output is generally not the same for the same initial conditions, except for the forced or
zero-state response, which is always the same.

the systems are zero-state equivalent, i.e., they have the same transfer function.
C(sI—A)'B+D=C(sI-A)"'B+D
C(sI—A)'B+D=CT Y{sI—-TAT H)"'TB+D =
CT IsTT !—TAT H'TB+D =
CT HT(sI—A)'THTB+D =
C(sI—A)'B+D.

Attention: In general the converse of P2. does not hold, i.e., zero-state equivalence does
not imply algebraic equivalence. For two state equations to be equivalent, they must have

the same dimension. This is, however, is not required for zero-state equivalent systems.

they have the same eigenvalues.!

AA) =det(AT — A) = det(AI — A) = A(A)

The equivalent state equations have the same characteristic polynomial and consequently
the same se of eigenvalues.

AA) = det(AT — A) =det(ATT! — TAT 1) = det(T)det(AIl — A) det(T~1) =
— det(AT — A)det(T)det(T!) = det(AI — A) = A(A).

Lrecall det(AB) = det(A)det(B) = det(B)det(A)
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Solution of an LTV system

We want to study the properties of solutions to SS LTV systems

x(t) = A(t)x(t) + B(t)u(t),
y(t) = C(t)x(t) + D(t)u(t),

A(t):[0,00) — R™™™ B(t):[0,00) — R™"*P, C(t):[0,00) — RI*™,
D(t) : [0, c0) — R9*P_ Start by study of

homogeneous linear system: x = A(t)x(t), x(tg) =%xo € R™, t >1t9. (1)

Theorem (Peano-Baker Series). The unique solution to (1) is given by
x(t) = d(t to)xo, (2)

t t ’Tl t T1 To

¢(t,to):I+J A(Tl)dTl—FJ A(Tl)J A(Tz)dedTl—FJ A(Tl)J

to to to to to to

@ O(t,tg): transition matrix (size n X n)
@ The series above is called Peano-Baker series

A(’Q)J A (T3)dT3dTodT;+- - -
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P1.

P.2

P3.

P4.

Properties of the transition matrix of and LTV system

For every tg, ¢ (t, tg) is the unique solution of

Lot to) = AL te), dltote) =1, t>to

For evert fixed tg, the ith column of ¢ (t, tg) is the unique solution to
x =A((t)x(t), x(to) =ei, t2=to,

where e; is the ith column of identity matrix I, or equivalently a column vector of all
zero entries except for the it which is equal to 1.

For every t, s, T we have
¢ (t,s)b (s, T) = P(t, 7).

This property is called the semigroup property.

For evert t, T, ¢ (t,to), is nonsingular and

b(t,t) "t =d(T, 1)

© Solmaz Kia, UCI



Properties of the transition matrix of and LTV system

P1. For every tg, ¢ (t, tg) is the unique solution of

Shltte) = A0t to), bltoto) =1, > to,

d t t T1
E(p(t, to) = A(t) + A(t) A(Tl)dTl + A(t) A(Tl) A(Tz)dedTl + - = A(t)(p(t, to)
to to to
t t T t T T)
blttal=T+| Almidr+| Al Alnldndns| A | A CAlwdnindn -
tg tg to tg tg tg
Recall
d b(t) . b(t) d
S| rend= feb@bo - fha®)a@ + [ L feod
dt Ja ) ay At

Proving that the series actually
converges and that the solution is

unique is beyond the scope of this
© Solmaz Kia, UCI course.



Properties of the transition matrix of and LTV system

P1. For every tg, ¢ (t, tg) is the unique solution of

d

¢ (t, to) = A(t)d(t, to),

dt $(to, to) =1, t = to.

P.2 For evert fixed tg, the it" column of & (t, tg) is the unique solution to

x =A(t)x(t), x(to) =ei, t2=to,

where e; is the ith column of identity matrix I, or equivalently a column vector of all

zero entries except for the it" which is equal to 1.

Example:
( cp =1
( 1 L,
0 % =0 x1(t) = ¢y x(to)zlol_) c :_t_o_>
:[ ]x $ 1 - t2 — 3 2 2
t 0 X =tXxq Xop) = C;—+C
2(6) = Q1 T G2 0 . =0
— 1=
\ kx(to)_[lla{%:l S
1 0 1 0
—>¢(t,to)=[£_t_5 Jax(t):[g_g NETED
2 2 2 2

x(t) = [tz
2
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Properties of the transition matrix of and LTV system

P.2 For evert fixed tg, the it" column of & (t, tg) is the unique solution to

x =A(t)x(t), x(to) =ei, t2=to,

where e; is the ith column of identity matrix I,,, or equivalently a column vector of all

zero entries except for the it which is equal to 1.

Fundamental Matrix of x = A(t)x(t):

« Consider a set of n initial condition x;(t,), i € {1,:--,n}.

* For every x;(t,) there exists a unique solution x;(t).

* Arrange these n solutions as X(t) = [x1(t) x,(t) - x,(t)]

* Note that X(t) = A(t)X(t)

If n initial condition x;(t,), i € {1,-:-,n} are linearly independent (X (t,) is non-
singular) then X (t) is called a fundamental matrix of x = A(t)x(t)

Let X (t) be any fundamental matrix of x = A(t)x(t). Then

d(t, to) = X(O)X (o).

» Fundamental matrix X(t) is not
unique.

> ¢(t,ty) is a unique special case
of a fundamental matrix.

Note that because X (t) is non-singular for all t > t,, its inverse is well-defined.



Properties of the transition matrix of and LTV system

Example:

le(z 8]x—><

9°C1=
.7.52 =tx1

- ¢t t) = XX (L) = [tz

:
1 C1:1 1
x(ty) = ol té > x(t) = [tz tgl
x1(t) = ¢q C2=77 2 2
t? — <
X20) = 1yt G c, = 0
x(to):H—> 2 o x(t)=|t? ¢
2 2 = — —— 42
2 2 2
\
1 i 1] 1 0 1 _71 1 0
té  t? [tz té t? tf = [tz té ‘—>
— 2 2242l 2 — -0 0 1 — -2
2 2 2 2+ 2 2 2 2+ > 2 2
1 0
X(t)=[ﬁ_ﬁ 1]96(150)
2 2
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Properties of the transition matrix of and LTV system

P3. For every t, s, T we have
b(t,s)P(s, )= d(t, 7).
This property is called the semigroup property.

X1 = (p(S, T)xO

: X(t) = (p(t» T)xO
x(t) = ¢(t,5)x1 = ¢(t,5)P(s,T)xg

»
»

© Solmaz Kia, UCI



P4. For evert t, T, ¢ (t,to), is nonsingular and

d(t,T) = (T, t).

From P3 we have ¢(t, t)dp (T, t) = ¢ (t, t) which gives d(t,T)Pp(T,t) = 1. From P3 we
can also write ¢(T,t)Pp(t, T) = ¢ (T, T) which gives d(T,t)Pp(t, T) = I. Therefore we
have ¢ (t, T)p (T, t) = cl)( t)d(t, t) = I. This completes the proof (recall the

definition of an inverse of a matrlx)
Note: Here, we used ¢ (t,t) =1 for all t.
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Solution of a LTV system

We want to study the properties of solutions to SS LTV systems
x(t) = A(t)x(t) + B(t)u(t),
y(t) = C(t)x(t) + D(t)u(t),

A(t) : [0, 00) — R™™ B(t) : [0, 00) — R™ P, C(t): [0, 00) — RI*™,
D(t) : [0, 00) — RI*P.

Theorem (Variation of constants): The unique solution to LTV SS equation
above is given by
t

x(t) = (t, to)xo +j d(t, ) B(T)u(x)de

to
t

y(t) = CH)b(t, to)xo + j C(t)d(t, T)B()u(t)dr + D(t)u(t),

to
where ¢ (t, to) is the state transition matrix (as defined before).
t

Yl = SOt to)xo + | ClUO(IBITu(Tr +D(tu(t)
homogene;;s response \to ~~ -
forced response
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