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What? Why? How?



Objective of this course

Study linear ordinary differential equations of the form below

state equation: x(t)

output equation: y(t)

A(t)x(t) + B(t)u(t),
C(t)x(t) + D(t)u(t),

» x(t) =

» x(t):

dx(t)/dt denotes the derivative of x(t) w.r.t time
[0,00) — R™: the system state
» u(t) : [0, 00) — R¥: the system inputs

» y(t) : [0,00) — R™: the system outputs

» A(t):[0,00) — R™™, B(t) : [0, 00) — R™™*, C(t):[0,00) — R™™, and

t): 10,
D(t) : [0, o0) — R™** are matrices of appropriate dimensions
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Linear time-varying system, or for short LTV system
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LTI systems: linear time invariant systems

=Ax(t) + Bu(t),
=Cx(t) + Du(t),

x € R™, u e R¥,
y e R™.
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Why do we study linear state space systems?

@ LTV systems are useful in many application areas.
e Models of mechanical systems (force versus velocity laws for friction; force
versus displacement laws for springs) or electrical systems (linear voltage
versus current laws for resistors) whose parameters (for example, the stiffness

md = —kd — bd +u

of a spring or the inductance of a coil) change in time. /
/| | s d(®
State-space representation: describing the system equations / k !
with a set of first order differential equations / VvV V VvV
? — m > u(t)
. : I
X1 =d-x;=d=x, "/ —b O O
xz=d—>5c2:&:—%d—%d+%u=—£x1—%x2+n%u —
v = [x1] _ Ok 1b X+ (1) J Let say we can only measure the displacement of the mass
X - T -~ y=d=[1 0]x+0u
y — N—_—— et
A B c D

i ‘i : e (1) esiisine x = Ax + Bu
inear time-invarian system: y = Cx + Du
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Why do we study linear state space systems?

@ But linear laws are only approximations to more complex nonlinear relations!

e More reasonable class of systems to study appears to be

x(t) =f(x(t),u(t)), x€R"™ ueRk,
y(t) =g(x(t),u(t)), yeR™

Let ml=1, ° —=1.

ml

X =0 X1 = X2
X2:é

- >

Y = X1

From Newtons law: m120 = mglsin(0) — bO + T

= < xo =T 4 gsin(x1) — x»
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@ LTV systems: linearizing a non-linear system around a trajectory

Why do we study linear state space systems?

One often uses the full nonlinear dynamics to design an optimal trajectory to
guide the system from its initial state to a desired final state.

One needs to ensure that the system will actually track this trajectory in the
presence of disturbances.

One solution is to linearize the nonlinear system (i.e. approximate it by a linear
system) around the optimal trajectory;

the approximation is accurate as long as the nonlinear system does not drift
too far away from the optimal trajectory.

The result of the linearization is a LTV system, which can be controlled using
the methods developed in this course.

If the control design is done well, the state of the nonlinear system will always
stay close to the optimal trajectory, hence ensuring that the linear
approximation remains valid.

.......

Nominal optimal trajectory:

In practice:
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Linearization about a nominal solution

@ LTV systems: linearizing a non-linear system around a trajectory

x € R™, u e R¥,
yeR™

Let x*°': [0, 00), u*' : [0, 00),

y* : [0, c0) be a nominal trajectory, i.e.,

sol

f(XSOI(t), U,SOI(J[)), XSOI(O) = x5!

g(x*(t), u*'(t)),

XSOl(t)
1:,sol(t)

Small perturbation around
nominal trajectory for all t > 0 (t € R>o)

wl(t) 4+ du(t)

= x°' + 5%(0)

@ perturbation in control input: 1.(t)

@ perturbation in initial conditions: x(0)

Results in small perturbation in

x(t) = x°N (1) + 6x(t),

y(t) =y (t) + dy(t)
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Linearization about a nominal solution

To investigate how x(t) and y(t) are perturbed, we are interested in dynamics of
Ox(t):

Ox(t) = x(t) —x*'(t),  dy(t) =y(t) —y*'(t)

Ox(t)

=x(t) — % = f(x(t), ult) — F(x*(t), w (1) =
£(x*°'(t) 4+ ox(t), 1™ (t) + du(t)) — F(x*, us) =

T fxsol 1) () + 0 (3, 1™ 5 (1) o [ 5x (1) |2, [[5n4(t) [2)= £, 1

f sol sol
X u )+8x ou

For small perturbations, then we obtain

ox(t) = 2L (xso! usohdx(t) 4+ 2F (x5!, us!) due(t)

X ou

In a similar way obtain the following for the output

dy(t) = 32 (x=', 1) ox (t) + 9 (x=°!, use!)du(t)
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Linearization about a nominal solution

Local linearization of the original nonlinear model around nominal trajectory
(Xsol usol)

where
Al) = o (! (1), w! (1)
B(t) = < (!(1), u! (1)
Clt) = 2 (1), ! (1)
D(t) = 09 (1), u!(1)
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Linearization about a nominal solution: example

From Newtons law: m126 = mglsin(0) — b0+ T
Let ml =1, % = 1. Linearize this system around constant angular

velocity 0= w trajectory, started at 0(0) = 0. The output of the system
we monitor is the angle of rotation.

0 X1 = X2
x1 = 0, : :
1=¢ = { %y = T + gsin(x1) — x5
X2:9 -
y=x1
xSOL(t):wt—FXl(O):wt XSOL(O):()
» Constant I locity trajectory: { "% ; '
onstant angular velocity trajectory {Xzsol(t)_wy x3°H(0) = w

> (x5°l(t),x5°1(t)) should satisfy the equations of the motion of the pendulum:
1 2 y q P

xjot =xsot w=w sol :
: . = _ =T = —gsin(wt)+w.
{x2501—T5°l+gsm(xf°l)><2S°l 0=Ts°! + gsin(wt) — w gsin{wt)

Ox(t) = A(t)dx(t) + B(t)dou(t),
Su(t) = C(1)5x(t) + D (t)dw(t)
where
A = e = S L B = e, 1) = ‘1’],
C(t) = g—i(xwl(t),u”l(t))v: (1 0] D(t)= g—ﬁ("ml(t)'uml(t)) =0, © Solmaz Kia, UCI



Linearization about a equilibrium point

@ LTI systems: linearizing a non-linear system around an equilibrium point.

Equilibrium point: A pair (x%9,u®) € R™ x R¥ is called an equilibrium
point of

f(x(t),u(t)), xeR™ ueRK (5a)
g(x(t),u(t)), yeR™ (5b)

x(t)
y(t)

|

if f(x°9,u®?) = 0. In this case u(t) = u®, x(t) = x*, y(t) = y* =
g(x®9, u®?) is a solution to (5).

Linearizing around (x®9,u®%) gives the following LTI system
Ox(t) = Adx(t) + Bdu(t),
dy(t) = Cox(t) + Dou(t)

A= (e yea) B = O (yea yeay
0xX ou

C =9 ea yea), D= 99 (xea o),
0x ou
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Feedback linearization

@ Feedback linearization Example :

M(q)G+B(q,q)g+G(q) =F,  q€R* FeRK

From Newtons law:
ml?0 = mglsin(0) —bO + T
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Feedback linearization

@ Feedback linearization: strict feedback form

7'(1 :fl (Xl) -+ Xo,
X2 =fa(Xx1, X2) + .

To feedback linearize, let
Zo = T1(x1) + X

Then

X1 =2,

. of . . of

2y =—(x1)%1 + Xo = =—(x1) (F1(x1) 4+ X2) + Fa2(x1, X2) + .

0X1 X1
Now, define
0f1
U =Unt1(X1,%X2) +V, Uni(x1,%X2) = _a_xl(xl)(fl(xl) +x2) — falx1,%x2),
Then, we obtain the following LTI system
X1 = Zo,

22 = V.
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Linear State Space Systems

Some terminology:

» the system above is called linear time-varying (LTV) system

» when u takes scalar values (k = 1): single input (S1); otherwise multiple input
(M)

» when y takes scalar values (m = 1): single output (SO); otherwise multiple
output (MO)

» when there is no state (n=0), i.e, y(t) = D(t)u(t) the system is called
memoryless.
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Study of linear state space systems: questions of interest
Learn something about linear systems:

x(t) = A(t)x(t) + B(t)u(t),
y(t) = C(t)x(t) + D(t)u(t), (%)

Questions of interest:

@ Is this system stable?
- The zero solution x(t) = 0 of a zero input LTV system is stable if, for all
€ > 0, there exists 6 = d(€) > 0 such that if ||x(0)|| < 9§, then||x(t)] < €, for
all t € R;o.
@ Does this system converge? (Asymptotic stability)
- If in addition to being stable, for every initial condition x(tg) = xo € R™, we
have x(t) — 0 as t — o0.
@ Is this system controllable?
- An LTV system is called controllable if and only if for all xo € R™ and for all
X € R™, and for all finite T > 0, there exists u(t) : [0, T] — R* such that the
solution of system (%) with initial condition x(0) = x¢ under the input w(t) is
such that x(T) = X.

@ |s this system observable?
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How do we carry out our study?

e Unfortunately, answering to our questions from the definition is not tractable
(impossible).
e This would require calculating all trajectories that start at all initial conditions.

o For example to check for controllability, except for trivial cases (like the linear
system x(t) = u(t)) this calculation is intractable, since the initial states, xo,
the times T of interest, and the possible input trajectories u(t) : [0, T] — R
are all infinite.

e Fortunately, linear algebra can be used to answer the question without even
computing a single solution.

Example: Consider a LTI system

x(t) =Ax(t) + Bu(t), x e R™ ue Rk (%)

Theorem: An LTI system is asymptotically stable if all eigenvalues of A have
negative real parts.

Theorem: An LTI system is controllable iff the matrix
B AB ---, A" 1B] € R™™* s rank n.
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How do we carry out our study?

Learn something about linear systems: How?

Linear systems theory brings together two areas of mathematics: algebra and
analysis.

@ As we will soon see, the state space, R™, of the systems has both an
algebraic structure (it is a vector space) and a topological structure (it is a
normed space).

@ The algebraic structure allows us to perform linear algebra operations,
compute projections, eigenvalues, etc.

@ The topological structure, on the other hand, forms the basis of analysis, the
definition of derivatives, etc.

The main point of linear systems theory is to exploit the algebraic struc-
ture to develop tractable “algorithms" that allow us to answer analysis ques-
tions which appear intractable by themselves.
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Our objective: a short summary

Learn something about linear systems:

x(t) = A(t)x(t) + B(t)u(t),
y(t) = C(t)x(t) + D(t)u(t),
exploit the algebraic structure to develop tractable “algorithms" that allow

us to answer analysis questions (stability, convergence, controllability, etc)
which appear intractable by themselves
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