
Linear Systems I
Lecture 9

Solmaz S. Kia
Mechanical and Aerospace Engineering Dept.

University of California Irvine
solmaz@uci.edu

Reading: Ch 5.3, 5.4 and Example 5.5, Ch 3.9 and Ch. 3.11 of Ref [1].
Note: These slides only cover part of the discussions in the class. For further details,

consult your in-class notes.
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Outline

Internal stability of LTV/LTI systems
eigenvalue test
a note on internal stability of LTV systems
Lyapunov method
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Stability of LTV systems

{
ẋ = A(t)x+ B(t)u,

y = C(t)x+D(t)u,
x(t0) = x0 ∈ Rn

Stability addresses what happens to our solutions as time increases

do they remain bounded
will they get progressively smaller
they diverge to infinity

Response is due to : response due to x0︸ ︷︷ ︸
internal stability

+ response due to u︸ ︷︷ ︸
Input-output stability

Lets start with Internal stability:

Recall homogeneous system,

ẋ = A(t)x, x(t0) = x0 ∈ Rn

Our solution is
x(t) = φ(t, t0)x0, t > t0
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Lyapunov stability theorem

Consider
ẋ = Ax, x(0) = x0 ∈ Rn

Theorem The following five conditions are equivalent for the LTI system above

1 The system is asymptotically stable
2 The system is exponentially stable
3 All the eigenvalues of A have strictly negative real parts
4 For every Q > 0, ∃ a unique solution P for the following Lyapunov equation

A>P + PA = −Q

Moreover P is symmetric and positive definite.
5 ∃ P > 0 for which the following Lyapunov matrix inequality holds

A>P + PA < 0
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Stability of LTI systems (Lyapunov method)

ẋ =Ax, x(t0) = x0 ∈ Rn (?)

Proof: Think about how you can prove (2)⇒(4) if one tells you the candidate solution is
P =

∫t
0 e
A> tQeAtdt. In your proof you need to show that for every positive definite Q, P is

finite, unique positive definite matrix that satisfies A>P+ PA = −Q.

Next we show (4)⇒(2) , i.e.,

∃ P � 0 and Q � 0 s.t. A>P+ PA = −Q =⇒ ‖x‖ 6 κ‖x(0)‖e−ct︸ ︷︷ ︸
(?) is exponentially stable

,

x(t) arbitrary trajectory of (?)

V(t) = x>(t)Px(t) � 0, where A>P+ PA = −Q

V̇(t) = ẋ>(t)Px(t) + x>(t)Pẋ(t)⇒ V̇(t) = x>(A>P+ PA)x = −x>Qx ≺ 0

Then for all ∀t > 0

V(t) 6 V(0), =⇒ x>(t)Px(t) 6 x>(0)Px(0) =⇒ ‖x(t)‖2 6
x>(0)Px(0)

λmin[P]

Starting from any initial condition states stay bounded: the system is stable!
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Proof continued from previous page

V̇(t) = −x>Qx 6 −λmin[Q]‖x‖2 6 −
λmin[Q]

λmax[P]
V(t), ∀t > 0.

Lemma

(Comparison Lemma) Let v(t) be a differentiable scaler signal for which

v̇(t) 6 µv(t), ∀t > t0,

for some constant µ ∈ R. Then

v(t) 6 v(t0)eµ(t−t0), ∀t > t0.

V(t) 6 V(0)e−ct, ∀t > 0, c :=
λmin[Q]

λmax[P]

‖x(t)‖2 6 V(0)

λmin[P]
e−ct, ∀t > 0

‖x(t)‖2 6 λmax[P]

λmin[P]
e−ct‖x(0)‖2, ∀t > 0

‖x(t)‖ 6

√
λmax[P]

λmin[P]
e−

c
2 t‖x(0)‖, ∀t > 0

‖x(t)‖ converges to zero exponentially fast, as t→∞ : system is exponentially stable
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Side note: stabilizing state feedback controller synthesize using Lyapunov stability results

Consider
ẋ =Ax+Bu, x ∈ Rn, u ∈ Rp

where (A,B) is controllable, i.e., we can always find a state feedback gain K ∈ Rp×n such that
the feedback controller u = −Kx stabilizes the system. That is A−BK is a Hurwitz matrix (all
its eigenvalues have negative real part).

ẋ =Ax+Bu =Ax+B(−Kx) = (A−BK)x.

In the following we show how you can synthesize one of those gains using Lyaunov stability
results and Matlab LMI tool box.

For a given K ∈ Rp×n, A−BK is asymptotically stable if and only if{
(A−BK)>P+ P(A−BK) ≺ 0,

P � 0.

Multiply these matrix inequalities from let and right by Q = P−1, we obtain the equivalent set
of equations {

Q(A−BK)> + (A−BK)Q ≺ 0,

Q � 0.

Let X = KQ, then we obtain{
QA> −X>B> +AQ−BX ≺ 0,

Q � 0.

The equations above are linear matrix inequalities (LMIs) in variables (X,Q). You can use
Matlab’s LMI solver to obtain a solution (X,Q). Once you have the solution, then your
stabilizing feedback gain is

K = XQ−1. 7 / 12



Review of positive definite functions

Def(positive-definite matrix): A symmetric n×n matrix Q is positive-definite if

x>Qx > 0, ∀x ∈ Rn\0 (?)

when > is replaced by <: negative-definite

when (?) holds only for > or 6: positive-semidefinite or negative-semidefinite
matrix, respectively when

Q> 0:

it is invertible
Q−1 > 0

all eigenvalues of Q are strictly positive
∃ a n×n real nonsingular H s. t.

Q =H>H

0 < λmin[Q]||x||2 6 x>Qx 6 λmax[Q]‖x‖2, ∀x 6= 0
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BIBO stability of LTI/LTV systems
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Review: stability of LTV systems

{
ẋ = A(t)x+ B(t)u,

y = C(t)x+D(t)u,
x(t0) = x0 ∈ Rn

Stability addresses what happens to our solutions

do they remain bounded
will they get progressively smaller
they diverge to infinity

Response is due to : response due to x0︸ ︷︷ ︸
internal stability

+ response due to u︸ ︷︷ ︸
Input-output stability

Def(Bounded-input-bounded-output (BIBO) stability): A system is said to
be BIBO stable if every bounded input excites a bounded output (zero-state
response).

An input u(t) is said to be bounded if u(t) does not grow to positive or
negative infinity, or equivalently, ∃ a constant um s.t.

|u(t)| 6 um <∞, ∀t > 0.

10 / 12



BIBO stability of SISO LTI systems

{
ẋ = Ax+ Bu,

y = Cx+Du,
x(t0) = x0 ∈ Rn (?)

yf(t) = yzs(t) =

∫t
0

g(t− τ)u(τ)dτ =

∫t
0

g(τ)u(t− τ)dτ

Theorem
A SISO system (?) is BIBO if and only if g(t) is absolutely integrable in [0,∞) or∫∞

0

|g(t)|dt 6M <∞
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BIBO stability of SISO LTI systems

{
ẋ = Ax+ Bu,

y = Cx+Du,
x(t0) = x0 ∈ Rn (?)

yf(t) = yzs(t) =

∫t
0

CeA (t−τ)Bu(τ)dτ+Du(t), ḡ(t) := CeAtB

yf(t) = yzs(t) =

∫t
0

ḡ(t− τ)u(τ)dτ+Du(t) =
∫t
0

ḡ(τ)u(t− τ)dτ+Du(t)

Corollary

A SISO system (?) is BIBO if and only if ḡ(t) = CeAtB is absolutely integrable in
[0,∞) or ∫∞

0

|ḡ(t)|dt 6M <∞
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