Linear Systems |

Lecture 9

Solmaz S. Kia
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Reading: Ch 5.3, 5.4 and Example 5.5, Ch 3.9 and Ch. 3.11 of Ref [1].
Note: These slides only cover part of the discussions in the class. For further details,

consult your in-class notes.
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o Internal stability of LTV/LTI systems

o eigenvalue test
e a note on internal stability of LTV systems
o Lyapunov method
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Stability of LTV systems

x = At B(t

x (t)x + B(th, x(tg) =xp € R™

y = C(t)x + D(t)u,
Stability addresses what happens to our solutions as time increases

@ do they remain bounded
o will they get progressively smaller
@ they diverge to infinity

Response is due to : response due to xg + response due to u

internal stability Input-output stability

Lets start with Internal stability:

Recall homogeneous system,
x =A(t)x, x(ty) =xg € R™
Our solution is

x(t) = d(t, to)xo, t=to
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Lyapunov stability theorem

Consider
x=Ax, x(0)=xp€R"
Theorem The following five conditions are equivalent for the LTI system above

@ The system is asymptotically stable
@ The system is exponentially stable
© All the eigenvalues of A have strictly negative real parts

@ For every Q > 0, 3 a unique solution P for the following Lyapunov equation
ATP+PA=-Q

Moreover P is symmetric and positive definite.

@ I P > 0 for which the following Lyapunov matrix inequality holds

ATP+PA <0
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Stability of LTI systems (Lyapunov method)

x = Ax, x(tg) =x9€R"™ (%)

Proof: Think about how you can prove (2)=-(4) if one tells you the candidate solution is
P= fé Al tQetdt. In your proof you need to show that for every positive definite Q, P is
finite, unique positive definite matrix that satisfies ATP + PA = —Q.

Next we show (4)=(2) , i.e.,
IP>~0and Q= 0st. ATP+PA =—-Q = ||x]| < x][|x(0)|le ",
x(t) arbitrary trajectory of (x)
V(t) =x"(t)Px(t) =0, where ATP+PA =—-Q
V(t) =% ()Px(t) +x(1)Px(t) = V(t)=x' (ATP+PA)x=—x'Qx <0
Then for all Vt > 0
x T (0)Px(0)
Amin[P]

Starting from any initial condition states stay bounded: the system is stable!

V(t) < V(0), = x" (t)Px(t) < x (0)Px(0) = [Ix(t)[]> <
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Proof continued from previous page

V(t) = —x" Qx < Amin[Ql[x]? < —?\"‘"“[[QP]} V(t), Vt=0.
Lemma

(Comparison Lemma) Let v(t) be a differentiable scaler signal for which

V(t) S pv(t), Vi 2> to,

for some constant u € R. Then

V(t) < v(to)e* ) it > to.

V(t) < V(0)e ', Vit>0, co— 7)\\:1;[[(3]}
x(®)]* < AZS[)P} et Vt>0
KO < 3wt x0)), v 0
KOl < A e S 0], Ve 0

|[x(t)|| converges to zero exponentially fast, as t — co : system is exponentially stable
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Side note: stabilizing state feedback controller synthesize using Lyapunov stability results

Consider

x =Ax+ Bu, x €R™ ue€RP
where (A, B) is controllable, i.e., we can always find a state feedback gain K € RP*™ such that
the feedback controller u = —Kx stabilizes the system. That is A — BK is a Hurwitz matrix (all
its eigenvalues have negative real part).

x =Ax+ Bu=Ax+ B(—Kx) = (A — BK)x.

In the following we show how you can synthesize one of those gains using Lyaunov stability
results and Matlab LMI tool box.

For a given K € RP*™, A — BK is asymptotically stable if and only if
(A—BK)TP+P(A—BK) <0,
o
Multiply these matrix inequalities from let and right by Q = P!, we obtain the equivalent set
of equations
{Q(A —~BK)T + (A - BK)Q <0,
Q > 0.
Let X = KQ, then we obtain
QAT —XTBT +AQ —-BX <0,
Q >0.
The equations above are linear matrix inequalities (LMIs) in variables (X, Q). You can use
Matlab’s LMI solver to obtain a solution (X, Q). Once you have the solution, then your

stabilizing feedback gain is
K=XQ . 7/12



Review of positive definite functions

Def(positive-definite matrix): A symmetric n x n matrix Q is positive-definite if
x"Qx >0, Yx € R™M0 (%)
when > is replaced by <: negative-definite

when (%) holds only for > or <: positive-semidefinite or negative-semidefinite
matrix, respectively when

G il )

22 4 y? 22 2

(definite) (semidefinite) (indefinite)

Q>0:

@ it is invertible

e Q1l>0
@ all eigenvalues of Q are strictly positive
@ Jan xn real nonsingular H s. t.
Q=HTH
@ 0 < Amin[QIIXI? < xTQx < Amax [QI[Ix[1%, Vx #0
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BIBO stability of LTI/LTV systems
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Review: stability of LTV systems

X = A(t)x + B(t)y, ) )
{‘J = C(t)x + D(t)u, X(to) =x0 € R

Stability addresses what happens to our solutions

@ do they remain bounded
o will they get progressively smaller
o they diverge to infinity

Response is due to : response due to xg + response due to u

internal stability Input-output stability

Def(Bounded-input-bounded-output (BIBO) stability): A system is said to
be BIBO stable if every bounded input excites a bounded output (zero-state
response).

An input u(t) is said to be bounded if 1(t) does not grow to positive or
negative infinity, or equivalently, 3 a constant u,, s.t.

) <um <oo, Vt=0.
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BIBO stability of SISO LTI systems

{)'c = Ax + Bu,

y=Cx+Du X(t) =% € R ()

ydﬂ:yuﬁ)zj

g(t—Ttu(t)dT = J g(tu(t —T)dt
0

A SISO system (%) is BIBO if and only if g(t) is absolutely integrable in [0, o) or

Jmmm<M<m
0
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BIBO stability of SISO LTI systems

{)'c = Ax + Bu,

y=Cx+Du X(t) =% € R ()

t
ye(t) = yue(t) = J Ce™ =9 Bu(t)dt + Du(t), g(t) .= Ce*'B
0
t

Yo(t) = yeelt) = | 5lt—rulridr+ Du(t) = | glluft—)dr-+ Duf

A SISO system (%) is BIBO if and only if §(t) = Ce™'B is absolutely integrable in
[0, 00) or

J@mm<M<w
0
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