
Linear Systems I
Lecture 15

Solmaz S. Kia
Mechanical and Aerospace Engineering Dept.

University of California Irvine
solmaz@uci.edu

1 / 1



Review: stabilizability for LTI systems

(A,B) uncontrollable: rankC = rank[B AB A2B · · · An−1B] = m < n

∃T (invertible) :
[
ẋc
ẋu

]
=

[
Ac A12

0 Au

]
︸ ︷︷ ︸

Ā

[
xc
xu

]
+

[
Bc
0

]
︸ ︷︷ ︸
B̄

u

Ā = T−1AT , B̄ = T−1B

Definition (Stabilizable LTI system)

Def. (Stabilizable system): The pair (A,B) is stabilizable if it is algebraically
equivalent to a system in the standard form for uncontrollable systems with
n = m (i.e, Au does not exist) or with Au a stability matrix.

Definition (Stabilizable LTI system (alternative definition))

The pair (A,B) is stabilizable if there exists a state feedback gain matrix K for
which all the eigenvalues of A− BK have strictly negative real part.
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Tests to check stabilizability of LTI systems

There are various stabilizability tests. Following are some of them:

Theorem
The following statements are equivalent:

The pair (A,B) is stabilizable;
There exists no left eigenvector of A associated with an eigenvalue having
nonnegative real part that is orthogonal to the columns of B;{

v?A = λv (Re[λ(A)] > 0)

v?B = 0
=⇒ v = 0

rank[λI−A B] = n for all Re[λ(A)] > 0.
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Review: tests to check stabilizability of LTI systems: example

ẋ =

[
−11 30
−4 11

]
x+

[
10
4

]
u

Controllability text:

rankC = rank[B AB] = rank

[
10 10
4 4

]
= 1 =⇒ (A,B) is not controllable!

PBH eigenvalue test for controllability

first find λ[A]:
∆(A) = det(λI−A) = (λ+ 11)(λ− 11) + 120 = λ2 − 1 = (λ− 1)(λ+ 1) = 0⇒ λ[A] = {−1, 1}

check rank of [λI−A B] for λ[A] = {−1, 1}

λ = −1 : rank[−I−A B] = rank

[
10 −30 10
4 −12 4

]
= 1⇒ λ = −1 is not a controllable eigenvalue

λ = 1 : rank[I−A B] = rank

[
12 −30 10
4 −10 4

]
= 2⇒ λ = 1 is a controllable eigenvalue

Then:

(A,B) is not controllable
(A,B) is stablilizable: because rank[λI−A B] = n for the eigenvalue with
positive real part λ = 1.
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Regulation via state-feedback control when (A,B) is controllable:
pole-placement/eigenvalue placement

ẋ=Ax+Bu, u= −Kx⇒ ẋ= (A−BK)x

(A,B) controllable: Given any symmetric set of n complex numbers {ν1,ν2, · · · ,νn}, there exists a full-state
feedback matrix K such that the closed-loop system matrix (A−BK) has eigenvalues equal to these νi’s.

∃K : det(λI−(A−BK)) = (λ−ν1)(λ−ν2) · · ·(λ−νn)︸ ︷︷ ︸
desired charac. polynomial

Single input systems (u∈ R, B∈ Rn×1): See HW 6 for a procedure for eigenvalue placement. You can also use
Achermann formula.

Multi-input systems (u∈ Rp, B∈ Rn×p): Theorem below gives a solution
Theorem: Suppose (A∈ Rn×n,B∈ Rn×p) is controllable. Then (A+BF,Bv), is controllable for almost

any F∈ Rp×n and v∈ Rp×1.
State feedback for multi input systems: Example, place the eigenvalues at {−1,−2,−3}

A=

1 0 0
1 2 0
4 5 1

 , B=

1 0
0 1
2 0


choose F∈ Rp×n and v∈ Rp×1 such that (A+BF,Bv) is controllable

F=

[
1 0 0
0 1 0

]
, v=

[
1 0

]
⇒ Ā=A+BF=

2 0 0
1 3 0
6 5 1

 , B̄=Bv=

1
0
2

 , rank(C̄) = rank

1 2 4
0 1 5
2 8 25


place eigenvalues of (Ā, B̄) at your desired location {−1,−2,−3} using the methods for single input
systems: here I get K̄= [28 80 − 8]

the K in A−BK is obtained from A−BK=A+BF−BvK̄=A−B(−F+vK̄)︸ ︷︷ ︸
K

, which gives

K=

[
27 80 −8
0 −1 0

]

For this example A−BK=

−26 −80 8
1 3 0

−50 −155 17

, with eigenvalues at the desired location {−1,−2,−3}.
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Regulation via state-feedback control when (A,B) is stabilizable:
pole-placement/eigenvalue placement

ẋ =Ax+Bu, u = −Kx⇒ ẋ = (A−BK)x

(A,B) is not controllable: rank(C) =m< n (A ∈ Rn×n):

∃T invertible : x = Tx̄ : ˙̄x =

[
ẋc
ẋu

]
=

[
Ac A12

0 Au

]
︸ ︷︷ ︸
Ā=T−1AT

[
xc
xu

]
+

[
Bc
0

]
︸ ︷︷ ︸

B̄=T−1B

u

u = −Kx = −KTx̄ = −K̄x̄ = −
[
K̄1 K̄2

] [xc
xu

]
˙̄x =

[
ẋc
ẋu

]
=

[
Ac −BcK̄1 A12 −BcK̄2

0 Au

]
︸ ︷︷ ︸

Ā−B̄K̄=T−1(A−BK)T

[
xc
xu

]

(Ac,Bc) is controllable, we can place eigenvalues of (Ac −BcK̄1) in any location we want using
state feedback!
We can only change the location of controllable eigenvalues using state feedback

We can only stabilize a system whose uncontrollable eigenvalues are stable

1 Transfer (A,B) to the controllable decomposition form
2 Recall that eig(A) = eig(Ac)∪ eig(Au)
3 (Ac,Bc) is controllable, so you can place the eigenvalues of this controllable part at your

desired locations using gain k̄1, i.e., eigenvalues of Ac −Bck̄1

4 you can find the gain K placing the controllable eigenvalues in your desired places using
K = K̄T−1, with K̄ =

[
k̄1 k̄2

]
. You can set k2 to zero.

5 you should arrive at eig(A−BK) = eig(Ac −Bck̄1)∪ eig(Au)
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State feedback design for a stabilizable system: example

ẋ =

[
−11 30
−4 11

]
x+

[
10
4

]
u

Controllability text:

rankC = rank[B AB] = rank

[
10 10
4 4

]
= 1 =⇒ (A,B) is not controllable!

eig(A): ∆(A) = det(λI−A) = (λ+ 11)(λ− 11)+ 120 = λ2 − 1 = (λ− 1)(λ+ 1) = 0⇒ eig(A) = {−1, 1}

Controllable decomposition

T =

[
5 0
2 0.2

]
, T−1 =

[
0.2 0
−2 5

]
Ā = T−1AT =

[
0.2 0
−2 5

] [
−11 30
−4 11

] [
5 0
2 0.2

]
=

[
1 −1.2
0 −1

]
, B̄ = T−1B =

[
2
0

]

Objective Place eigenvalues of A−BK at {−1,−3}

We use (Ac,Bc) = (1, 2) to place eigenvalue of the controllable part at −3: λ(Ac −Bck̄1) = −3

λ− (1 − 2k̄1) = λ+ 3 ⇒ k̄1 = 2.

u = K̄x̄ =
[
2 0

]
x̄ =

[
2 0

]
T−1x =

[
2 0

] [0.2 0
−2 5

]
x =

[
0.4 0

]︸ ︷︷ ︸
K

x.

You can confirm this by checking eigenvalues of A−BK =

[
−11 30
−4 11

]
−

[
10
4

]
[0.4 0] =

[
−15 30
−5.6 11

]
.
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State feedback design for a stabilizable system: example (alternative
approach)

Consider the state feedback u = −Kx = −[k1 k2]x

Acl =A−BK =

[
−11 − 10k1 30 − 10k2

−4 − 4k1 11 − 4k2

]
∆(Acl) = ∆(A−BK) = det

(
λI−

[
−11− 10k1 30 − 10k2

−4 − 4k1 11 − 4k2

])
= (λ+1)(λ+10k1+4k2−1) = 0

eig(Acl) = {−1,−10k1 − 4k2 + 1}

Notice that we cannot change the location of uncontrollable eigenvalue but we can put the
controllable eigenvalue in any new location using state feedback!

We can pick k1 and k2 such that Acl has eigenvalues with strictly negative real parts and,
as such, stabilize the closed-loop system using u = −Kx.

For example k1 = 0 and k2 = 1 results in λ[Acl] = {−1,−3}.
You can confirm this by checking eigenvalues of

A−BK =

[
−11 30
−4 11

]
−

[
10
4

]
[0 1] =

[
−11 20
−4 7

]
.
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Next Lecture
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Observability of LTI systems

{
ẋ = Ax+ Bu, x ∈ Rn, u ∈ Rp

y = Cx+Du, y ∈ Rq
x(0) = x0 ∈ Rn (?)

Question of interest in Observability: Can we reconstruct x(0) by knowing y(t) and
u(t) over some finite time interval [0, t1]? (By knowing the initial condition, we can
reconstruct the entire state x(t), then use it in our state feedback to control the system)

y(t) = CeAtx(0) + C
∫ t

0

eA(t−τ)Bu(τ)dτ+Du(t)

⇔ ȳ(t) = CeAtx(0)

ȳ(t) = y(t) − C

∫ t
0

eA(t−τ)Bu(τ)dτ−Du(t)

− − − −−−−−−−−−−−−−−−−−−−−−−

The LTI state-space equation (?) is said to be observable if for any unknown initial state
x(0), ∃ finite time t1 > 0 such that the knowledge of the input u and the output y over
[0, t1] suffices to determine uniquely the initial state x(0). Otherwise, the equation is said
to be unobservable.

−−−−−−−−−−−−−−−−−−−−−−−−−
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Observability of LTI systems

{
ẋ = Ax+ Bu, x ∈ Rn, u ∈ Rp

y = Cx+Du, y ∈ Rq
x(0) = x0 ∈ Rn (?)

Question of interest in Observability: Can we reconstruct x(0) by knowing y(t) and
u(t) over some finite time interval [0, t1]? (By knowing the initial condition, we can
reconstruct the entire state x(t), then use it in our state feedback to control the system)

y(t) = CeAtx(0) + C
∫ t

0

eA(t−τ)Bu(τ)dτ+Du(t)⇔ ȳ(t) = CeAtx(0)

ȳ(t) = y(t) − C

∫ t
0

eA(t−τ)Bu(τ)dτ−Du(t)

− − − −−−−−−−−−−−−−−−−−−−−−−

The LTI state-space equation (?) is said to be observable if for any unknown initial state
x(0), ∃ finite time t1 > 0 such that the knowledge of the input u and the output y over
[0, t1] suffices to determine uniquely the initial state x(0). Otherwise, the equation is said
to be unobservable.

−−−−−−−−−−−−−−−−−−−−−−−−−
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Tests for Observability of LTI systems

The following statements are equivalent:

1 the n-dimentional pair (A,C) is observable

2 The n×n matrix Wo(t) =
∫t

0 e
A>τC>CeAτdτ is nonsingular for all t > 0.

3 Let O =


C
CA
...

CAn−1


nq×n

be the observability matrix, then rank(O) = n

4 rank

[
λI−A
C

]
= n for all complex λ

5 rank

[
λI−A
C

]
= n for all λ eigenvalues of A

6 If in addition, all eigenvalues of A have negative real parts, then the unique solution of
A>Wo +WoA = −C>C

is positive definite. The solution is called the observability Gramian and can be expressed as

Wo =

∫∞
0
eA
>τC>CeAτdτ
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Review of controllable decomposition

ẋ =Ax+Bu, x ∈ Rn, u ∈ Rp

y = Cx+Du, y ∈ Rq

Theorem

rank
[
B AB · · · An−1B

]
=m< n

∃T invertible s.t. x̄ = T−1x transforms state equations to

Ā = T−1AT =

[
Ac A12

0 Au

]
, B̄ = T−1B =

[
Bc
0

]
C̄ =

[
Cu Cu

]
, D̄ =D,

Ac ∈ Rm×m, Bc ∈ Rm×p, Cc ∈ Rq×m,

T =
[
t1 t2 · · · tm︸ ︷︷ ︸m linearly independent
columns of C

∣∣∣ tm+1 tm+2 · · · tn︸ ︷︷ ︸
any way you can
s.t. all columns of
T are linearly independent

]

(Ac,Bc) is controllable!

G(s) = Ḡ(s) = C̄(sI− Ā)−1B̄+ D̄ = Cc(sI−Ac)
−1Bc +D
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Observable decomposition

ẋ =Ax+Bu, x ∈ Rn, u ∈ Rp

y = Cx+Du, y ∈ Rq

Theorem

rank


C
CA

...
CAn−1

 = m̄ < n :

∃T invertible s.t. x̄ = T−1x transforms state equations to

Ā = T−1AT =

[
Ao 0
A12 Aō

]
, B̄ = T−1B =

[
Bo
Bō

]
C̄ = CT =

[
Co 0

]
, D̄ =D,

Ao ∈ Rm̄×m̄, Bo ∈ Rm̄×p, Co ∈ Rq×m̄,

T =
[

t1 t2 · · · tm̄︸ ︷︷ ︸
any way you can
s.t. all columns of
T are linearly independent

∣∣∣ tm̄+1 tm̄+2 · · · tn︸ ︷︷ ︸
n− m̄ linearly independent
vectors spanning the
nullspace of O

]

(Ao,Bo) is observable.

G(s) = Ḡ(s) = C̄(sI− Ā)−1B̄+ D̄ = Co(sI−Ao)
−1Bo +D
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Kalman decomposition
ẋ =Ax+Bu, y = Cx+Du, x ∈ Rn, u ∈ Rp,y ∈ Rq

Theorem

rank
[
B AB · · · An−1B

]
=m< n

rank


C
CA

...
CAn−1

 = m̄ < n

∃T invertible s.t. x̄ = T−1x transforms state equations to

ẋcoẋcōẋc̄o
ẋc̄ō

 =

Aco 0 xo 0
Acx Acō Axx Axō

0 0 Ac̄o 0
0 0 Ac̄x Ac̄ō


︸ ︷︷ ︸

Ā=T−1AT

xcoxcōxc̄o
xc̄ō

+

BcoBcō
0
0


︸ ︷︷ ︸
B̄=T−1B

u

y =
[
Cco 0 Cc̄o 0

]︸ ︷︷ ︸
C̄=CT

xcoxcōxc̄o
xc̄ō

+Du,

T =
[
Tco Tcō Tc̄o Tc̄ō

]
columns of [Tco Tcō] span the ImC
columns of Tcō span the nullO∩ ImC
columns of [Tcō Tc̄ō] span the nullO
columns of Tc̄o along with the elements described above construct an invertible T

(Aco,Bco,Cco) is both controllable and observable.

(

[
Aco 0
Acx Acō

]
,

[
Bco
Bcō

]
) is controllable

(

[
Aco Axo

0 Ac̄o

]
,
[
Cco Cc̄o

]
) is controllable

G(s) = Ḡ(s) = C̄(sI− Ā)−1B̄+ D̄ = Cco(sI−Aco)
−1Bco +D 14 / 1


