Linear Systems |

Lecture 15

Solmaz S. Kia

Mechanical and Aerospace Engineering Dept.
University of California Irvine
solmaz@uci.edu

1/1



Review: stabilizability for LTI systems

(A, B) uncontrollable: rank @ =rank[B AB A®B --- A" 1B]=m<n

3T (invertible) : {:C} = {AO” /212} {:C} + ﬁ)c} u
gus . uw gus
A

A=T1!AT, B=T'B

Definition (Stabilizable LTI system)

Def. (Stabilizable system): The pair (A,B) is stabilizable if it is algebraically
equivalent to a system in the standard form for uncontrollable systems with
n=m (i.e, A, does not exist) or with A, a stability matrix.

Definition (Stabilizable LTI system (alternative definition))

The pair (A, B) is stabilizable if there exists a state feedback gain matrix K for
which all the eigenvalues of A — BK have strictly negative real part.
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Tests to check stabilizability of LTI systems

There are various stabilizability tests. Following are some of them:

Theorem

The following statements are equivalent:
@ The pair (A, B) is stabilizable;

@ There exists no left eigenvector of A associated with an eigenvalue having
nonnegative real part that is orthogonal to the columns of B;

{V*A =M (RD(A)>0) _
v'B =0

o rank[A\l — A B] =n for all Re[A(A)] > 0.




Review: tests to check stabilizability of LTI systems: example

Controllability text:

rank € = rank[B AB] = rank [140 {40} =1=— (A, B) is not controllable!

PBH eigenvalue test for controllability

@ first find A[A]:

A(A)=det(Al—A) = A+11)(A—11) +120=A2—-1= (A—1)(A+1) =0= A[A] ={-1,1}
@ check rank of [AT — A B] for A[A] ={—1,1}

A= —1: rank[-I — A B] =rank [140 :‘;’g 140} =1=- A= —1is not a controllable eigenvalue
A =1: rank[I — A B] =rank [142 :‘;’g 140] =2 = A =1is a controllable eigenvalue
Then:

o (A,B) is not controllable
o (A,B) is stablilizable: because rank[AI — A B] = n for the eigenvalue with
positive real part A = 1.
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Regulation via state-feedback control when (A,B) is controllable:

pole-placement/eigenvalue placement

X Ax +Bu, u Kx = x (A —BK)x

@ (A, B) controllable: Given any symmetric set of n complex numbers {v{, vy, -, vn}, there exists a full-state
feedback matrix K such that the closed-loop system matrix (A — BK) has eigenvalues equal to these v 's.

3K : det(AT — (A —BK)) = (A —v1)(A—vp) - (A —vn)

desired charac. polynomial

@ Single input systems (u € R, B € R X1): See HW 6 for a procedure for eigenvalue placement. You can also use
Achermann formula.

@ Multi-input systems (u € RP, B € R XP): Theorem below gives a solution

Theorem: Suppose (A € R XM B € R XP ) js controllable. Then (A + B F,Bv), is controllable for almost
any F € RPX™ and v € RP X1,
State feedback for multi input E: le, place the ei | at {—1, —2, —3}

1 0 0 1 0
1 2 o, B=1|0 1
4 5 1 2 0

@ choose F € RPX™ and v € RP X! such that (A + BF,Bv) is controllable
Lo o ) 2 0 0] 1 ) 12 4
F:[o 1 0}, v=|L 0= A=A+BF=|1 3 0|,B=Bv=|0|, rank(C) =rank |0 1 5
6 5 1 2 2 8 25

@ place eigenvalues of (A, B) at your desired location { —1, —2, —3} using the methods for single input
systems: here | get K = [28 80 — 8]

@ the Kin A —B K is obtained from A —BK = A +BF —BvK =A —B (—F +v K), which gives
-

K
27 80 8
K=lo -1 o }
—26  —80 8
@ For this example A —BK = | 1 3 0 |, with eigenvalues at the desired location {—1, —2, —3}.
—50  —155 17
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Regulation via state-feedback control when (A,B) is stabilizable:

pole-placement/eigenvalue placement

x=Ax+Bu, u=-—-Kx=x=(A—-—BK)x
@ (A,B) is not controllable: rank(€) =m <n (A € R"*"):

H . iy — T3 - z Xe _ Ac Al [xc B¢
JTinvertible: x =Tx: X = [Xu} = [ 0 Au:| [Xu} + [ 0] u
~——
A=T—1AT B=T-1B

Xu

- Xc A BoKy Ap—BcKa| [xe
X = |- =

Xu 0 A Xu

A—BRK=T—1(A-BK)T

(A, B¢) is controllable, we can place eigenvalues of (A, — B.K;) in any location we want using

state feedback!
We can only change the location of controllable eigenvalues using state feedback

‘We can only stabilize a system whose uncontrollable eigenvalues are stable

0 Transfer (A, B) to the controllable decomposition form

0 Recall that eig(A) = eig(A.) Ueig(Ay)

e (Ac,B¢) is controllable, so you can place the eigenvalues of this controllable part at your
desired locations using gain k1, i.e., eigenvalues of A, — B k;

o you can find the gain K placing the controllable eigenvalues in your desired places using
K =KT, with K=[k; kp|. You can set k; to zero.

@ you should arrive at eig(A — BK) = eig(A. — Bck1) Ueig(Ay)
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State feedback design for a stabilizable system: example

. —11 30 10
x=[74 11]x+{4]u
Controllability text:

rank € = rank[B AB] = rank [140 140} =1=— (A, B) is not controllable!

eig(A): A(A) =det(A\I-A) = (A+11)(A—11) +120 = A2—1 = (A—1)(A+1) = 0 = eig(A) = {—1,1}

Controllable decomposition
) 0 3 |02 0
T= [2 0‘2] » T= [72 5]

s _taar_[02 O][-11 30][5 o] _[1 -12] - .. [2
A=T AT*[—z 5“—4 11“2 0.2] [o —1}' B=T B*M

Objective Place eigenvalues of A — BK at {—1, —3}
We use (A.,B.) = (1,2) to place eigenvalue of the controllable part at —3: A(A, — B ki) = —3
A—(1—2ki))=A+3 =k =2

—4 11



State feedback design for a stabilizable system: example (alternative

approach)

Consider the state feedback 1 = —Kx = —[k; ko]x

_ _ [-11—-10k; 30— 10k
A“_A*BK_[—4—41<1 11—4k2}

—11— 10k — 10k
A(Acy) = A(A-BK) = det (?\I—{ e T fkj ) = (A+1) (A+10k1 +4k—1) = 0

eig(Ac) ={—1,—10k; — 4ko + 1}

@ Notice that we cannot change the location of uncontrollable eigenvalue but we can put the
controllable eigenvalue in any new location using state feedback!

@ We can pick k; and kp such that A, has eigenvalues with strictly negative real parts and,
as such, stabilize the closed-loop system using u = —Kx.

@ For example k1 =0 and ky = 1 results in A[A ] ={—1, —3}.
You can confirm this by checking eigenvalues of

—11 30| [10 —11 20
A*BK:{A 11}*{4}[0 1]:{—4 7}'
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Next Lecture
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Observability of LTI systems

x=Ax+Bu, xeR" ueRP
x(0) =xo € R™ (%)
y=Cx+Du, yeR9
Question of interest in Observability: ~ Can we reconstruct x(0) by knowing y(t) and
u(t) over some finite time interval [0, t;]?7 (By knowing the initial condition, we can
reconstruct the entire state x(t), then use it in our state feedback to control the system)

t

y(t) = Ce™x(0) + CJ MY By (1)dT + Du(t)
0
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Observability of LTI systems

x = Ax + Bu, eR™, ueRP
X AT B X v x(0)=x €R™ (%)
y=Cx+Du, yeR9

Question of interest in Observability: ~ Can we reconstruct x(0) by knowing y(t) and
u(t) over some finite time interval [0, t;]?7 (By knowing the initial condition, we can
reconstruct the entire state x(t), then use it in our state feedback to control the system)

t

y(t) = Ce™x(0) + CJ ARy (T)dT 4+ Du(t) < (t) = Ce™'x(0)
0
t

gt) =y(t)—C L A By(T)dT — Du(t)

The LTI state-space equation (x) is said to be observable if for any unknown initial state
x(0), 3 finite time t; > 0 such that the knowledge of the input u and the output y over
[0, t;] suffices to determine uniquely the initial state x(0). Otherwise, the equation is said
to be unobservable.
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Tests for Observability of LTI systems

The following statements are equivalent:

@ the n-dimentional pair (A, C) is observable

@ The n x 1. matrix is nonsingular for all t > 0.

W, (t) = _f(t) eATTCT Certdr

C
CA
Q Let O = . be the observability matrix, then rank(O) =n

C}¥n71

ngxn

Q rank A=A n for all complex A
C

rank A=A = n for all A eigenvalues of A
C

If in addition, all eigenvalues of A have negative real parts, then the unique solution of
ATW, +W,A =—-C'C
is positive definite. The solution is called the observability Gramian and can be expressed as
(o ¢]
.
W, :J eM TCcTCcerdr
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Review of controllable decomposition

x=Ax+Bu, x€eR"™, ueRP
y=Cx+Du, yeR9

rank[B AB ... A“‘lB] =m<n
3T invertible s.t. X = T~ 1x transforms state equations to
= A A = B.
_ 71 _ | A 12 _ 1-1p _ | Bc
A=T AT—{O Au:|’ B=T B—[O}
C=[C. Cu.], D=D,
Ac e ]RTrLXTTI.Y BC e Rmxp’ CC e qum’

T=[ & ty ot | tmi1 tmiz o ta |

s.t. all columns of

m linearly independent any way you can
columns of €

T are linearly independent

(A¢, B.) is controllable!

G(s)=G(s) =C(sI—A) 'B+D =C.(sI—A.) " 'B.+D
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Observable decomposition

x = Ax + Bu,
y = Cx+ Du,

x € R™,

u € RP
y € R4

3T invertible s.t. X = T—'x transforms state equations to

¢ = A 0 B
_ 711 _ o _ 171 _ o
CA A=T AT7|:A12 6}’ B=T "B [ :|
rank . =m<n _
: ¢=cT=[C, 0, D=D,
can— Ao ER™X™ B, cR™XP, C, gRIX™
T=[ & to tm trm1 tmao tn ]

any way you can
s.t. all columns of
T are linearly independent

(Ao, Byo) is observable.

n — m linearly independent
vectors spanning the
nullspace of O

(s)=C(sI—A) 'B+D=Cqo(sI—A,) ‘B, +D
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Kalman decomposition

x=Ax+Bu, y=Cx+Du x€eR" uecRP yecRY

3T invertible s.t. X = T—'x transforms state equations to

rank [B AB A" Bl=m<n Xco Aco 0 %® 0 Xco Beo
@ ’:‘:6 _ Acx Acs Axx Axs Xco Bes
CA Xco 0 0 co Xco 0
_ Xco 0 0 Acx  Acsl Ixes 0
rank . =m<n
. =T—1AT B=T—1B
CAn—1 Xco
Xoa
= (C 0 Cg 0 co Du,
y [ co co } Xto aF
C=CT Xeo
v
T= [Tco Tes Teo Téé}
@ columns of [T¢, Tcs] span the ImC
@ columns of T¢.5 span the nullO NImC
@ columns of [Tcs Tgzs] span the nullO
@ columns of Tz, along with the elements described above construct an invertible T
@ (Aco,Bco,Ceo) is both controllable and observable.
) ({ACO 0 ] , [BCD]) is controllable

Acx Acs Bc6

A A .
) ({ 60 A;Z] [Cco  Cczo]) is controllable

A) 1B+ D =Ceol(sl—Aco)

Beo + D

14 /1



