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Constrained optimization vs. unconstrained optimization

Unconstrained optimization

x? =argmin
x∈R2

(x1 − 2)2 + (x2 − 1)2︸ ︷︷ ︸
f(x)

Constrained optimization

x? =argmin
x∈R2

(x1 − 2)2 + (x2 − 1)2︸ ︷︷ ︸
f(x)

s.t.

{
−x21 + x2 > 0

−x1 − x2 + 2 > 0
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Constrained optimization

We consider the following standard form:

x? =argmin
x∈Rn

f(x) s.t.

hi(x) = 0, i ∈ {1, · · · ,m}

gi(x) 6 0, i ∈ {1, · · · , r}

hi : Rn → R, gi : Rn → R

or

x? =argmin
x∈Rn

f(x) s.t.

h(x) = 0,

g(x) 6 0,

h : Rn → Rm, g : Rn → Rr

f,h,g: continuously differentiable function of x
e.g., f,h,g ∈ C1 continuously differentiable
e.g., f,h,g ∈ C2 both f and its first derivative are continuously differentiable
the equality constraints are underdetermined. It is usually assume that m 6 n
no restriction on r

Feasible set: set up points that satisfy the constraints

Ω = {x ∈ Rn|h(x) = 0, g(x) 6 0}.

The constrained optimization can also be written as

x? =argmin
x∈Ω

f(x)
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First order necessary condition for optimality

x? is a local minimizer:

f(x) > f(x?), ∀x ∈ Ω s.t. ‖x− x?‖ 6 ε

Fitst order necessary condition analysis: consider x ∈ Ω that are in small neighborhood
of a local minimum x?: x = x? + ∆x

f(x+ ∆x) ≈ f(x?) +∇f(x?)>∆x+H.O.T f(x)>f(x
?)

=⇒ ∇f(x?)>∆x > 0

x = x? + ∆x ∈ Ω:

h(x+∆x) = 0⇒ h(x+∆x)≈h(x?)+∇h(x?)>∆x=0
h(x?)=0
=⇒ ∇h(x?)>∆x = 0

g(x+∆x) 6 0⇒ g(x+∆x)≈g(x?)+∇g(x?)>∆x=0
gi(x

?)60
=⇒

{
∇gi(x?)>∆ 6 0 gi(x

?) = 0

none gi(x
?) < 0

Active inequality set at x: A(x) =
{
i ∈ {1, · · · , r}

∣∣ gi(x) = 0
}

Set of first order feasible variations at x:

V(x) =
{
d ∈ Rn

∣∣ ∇hi(x)>d = 0, ∇gj(x)>d 6 0, j ∈ A(x?)
}

FONC for optimality : ∇f(x?)>∆x > 0, for ∆x ∈ V(x?)
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Constrained optimization: equality constraints

x? =argmin
x∈Rn

f(x) s.t.

hi(x) = 0, i ∈ {1, · · · ,m}

or x? =argmin
x∈Rn

f(x) s.t.

h(x) = 0,

f,h,g: continuously differentiable function of x
e.g., f,h ∈ C1 continuously differentiable
e.g., f,h ∈ C2 both f and its first derivative are continuously differentiable

First Order Necessary Condition for Optimality: x? is a local minimizer then

∇f(x?)>∆x > 0, for ∆x ∈ V(x?)

Set of first order feasible variations at x

V(x) = {d ∈ Rn
∣∣ ∇hi(x)>d = 0}
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Geometric Interpretation of Lagrange Multipliers

∇f(x?) = −λ∇h(x?)

The methods I set forth require neither constructions nor geometric or
mechanical considerations. They require only algebraic operations subject
to a systematic and uniform course. -Lagrange 6 / 9



Lagrange Multipliers

For a given local minimizer x? there exists scalars λ1, · · · , λm︸ ︷︷ ︸
Lagrange Multipliers

such that

∇f(x?) +
m∑
i=1

λi∇hi(x?) = 0. (LM-1)

∇f(x?) belongs to the sub space spanned by the constraint gradients at x?:

∇f(x?) = −λ1∇h1(x?) − · · ·− λm∇hm(x?)

∇f(x?) is orthogonal to the subspace of first order feasible variants
V(x?) = {d ∈ Rn

∣∣ ∇hi(x?)>d = 0}

∇f(x?)>∆x = (−λ1∇h1(x?) − · · ·− λm∇hm(x?))>∆x⇒
∇f(x?)>∆x = 0, for ∆x ∈ V(x?)

Thus, according to the Largrange multiplier condition (LM-1), at the local
minimum x?, the first order cost variation ∇f(x?)∆x is zero for all variations
∆x in V(x?). This statement is analogous to the "zero gradient condition
∇f(x?) of the unconstrained optimization.
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Necessary Conditions for Optimality

Proposition (Lagrange Multiplier Theorem-Necessary conditions)

Let x? be a local minimum of f subject to h(x) = 0 and assume that the
constraint gradients {∇h1(x?), ,∇hm(x)} are linearly independent. Then there
exists a unique vectors λ? = (λ?1 , · · · , λ?m) called Lagrange multiplier vector, s.t.

∇f(x?) +
m∑
i=1

λ?i∇hi(x?) = 0.

If in addition f and h are twice continuously differentiable we have

y>
(
∇2f(x?) +

m∑
i=1

λ?i∇2hi(x
?)
)
y > 0, ∀y ∈ V(x?)

where V(x?) is the space of first order feasible variations, i.e.,

V(x?) = {d ∈ Rn
∣∣ ∇hi(x?)>d = 0}.
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A Problem with no Lagrange Multipliers: regularity of optimal point

Regular point of a set of constraints: A feasible vector x for which the constraint
gradients {∇h1(x), · · · ,∇hm(x)} are linearly independent.

For a local minimum that is not regular, there may not exist Lagrange multipliers.

minimize f(x) = x1 + x2, s.t.

h1(x) = (x1 − 1)2 + x22 − 1 = 0, h2(x) = (x1 − 2)2 + x22 − 4 = 0.

x? is not regular. Therefore,
this problem cannot be solved
using Lagrange multiplier
theorem.

∇f(x?) cannot be written as
linear combination of ∇h1(x

?)
and ∇h2(x

?)
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