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Numerical solvers for unconstrained optimization

Unconstrained optimization:

x? =argmin
x∈Rn

f(x)

Iterative solution method xk+1 = xk + αk dk

Observations:

Steepest descent algorithm can be very slow with lots of zig-zaging

Newton method is faster but numerically is expensive due to information
equipment associated with the evaluation, storage and inversion of Hessian.

Q: Is it possible to accelerate convergence with low numerical cost?
A: Quasi-Newton methods: Consider xk+1 = xk − αk Sk gk

Try to construct the inverse Hessian, or an approximation of it, using
information gathered as the descent process progresses.

The current approximation Hk is then used at each stage to define the next
descent direction by setting Sk = Hk in the modified Newton method.
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Quasi Newton Methods (review from last week)

Let

gk = ∇f(xk),
qk = gk+1 − gk,
pk = xk+1 − xk

then g(xk+1) = g(xk + pk) ≈ g(xk) +∇2f(xk)
>pk. Therefore,

qk ≈ ∇2f(xk)pk

or
(∇2f(xk))

−1qk ≈ pk

We expect that Hk that wants to approximate (∇2f(xk))
−1 should satisfy

1 Hk+1qi = pi, i ∈ {0, 1, · · · ,k}
2 Hk symmetric
3 Hk > 0

For the case of constant Hessian, after n linearly independent steps, then we have
Hn = F−1.
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Quasi Newton Methods (review from last week)

Initialization k = 0: start by x0 ∈n and any H0 > 0
Step 1. Set dk = −Hkgk.
Step 2. obtain αk =⊂ α > 0argminf(xk + αdk). Then obtain xk+1 = xk + αdk and
pk = αkdk, and gk+1.
Step 3. Set qk = gk+1 − gk and

Rank one correction:Hk+1 = Hk +
(pk −Hk qk)(pk −Hk qk)

>

q>k (pk −Hkqk)

DFP method :Hk+1 = Hk +
pkp

>
k

p>k qk
−
Hkqkq

>
kHk

q>kHkqk
.

Check the stoping condition; if not satisfied update k and return to Step 1.

In Rank One Correction

Hk is symmetric

But not necessarily positive definite (we need q>k (pk −Hkqk) > 0 which is not
guaranteed at all times).

DFP method generates positive definite Hk and has better convergence results that the
Rank One Correction method.
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Quasi Newton Methods: The Broyden family

The idea in the Broyden method is to first approximate the Hessian (denote this
estimate by Bk) and then inverse it to obtain the inverse Hessian approximation (denote
this estimate by Hk) which will be use in the quasi-Newton method to compute the
xk+1 = xk − αkHkg(xk), where Hk = (Bk)

−1. Recall

gk = ∇f(xk), qk = gk+1 − gk and pk = xk+1 − xk

then g(xk+1) = g(xk + pk) ≈ g(xk) +∇2f(xk)
>pk. Therefore, qk ≈ ∇2f(xk)pk. We

expect that Bk that wants to approximate (∇2f(xk)) should satisfy

1 Bk+1pi = qi, i ∈ {0, 1, · · · ,k}
2 Bk symmetric and Bk > 0

For constant Hessian F, after n linearly independent steps, then we have Bn = F.

To develop the Broyden approximate to the Hessian, we follow the DFP method exactly
with the only difference that qp and pk are replaced, replaced respectively by pk and qk.

DFP method : Hk+1 = Hk +
pkp

>
k

p>k qk
−
Hkqkq

>
kHk

q>kHkqk

Broyden-Fletcher-Godfarb-Shanno (BFGS) method : Bk+1 = Bk +
qkq

>
k

q>k pk
−
Bkpkp

>
kBk

p>kBkpk

Starting with a B0 > 0, similar Bk is guaranteed to be positive definite for k > 0.
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Quasi Newton Methods: The Broyden family

Bk+1 = Bk +
qkq

>
k

q>k pk
−
Bkpkp

>
kBk

p>kBkpk

We are interested in Hk = (Bk)
−1. As it happens we can use the property below to

compute Hk in a closed form.

Sherman-Morrison formula: Let A ∈ Rn×n be invertible. Then, for a ∈ Rn and b ∈ Rn
we have (

A+ ab>
)−1

= A−1 −
A−1ab>A−1

1+ b>A−1a
.

HBFGSk+1 = (BBFGSk+1 )−1 = Hk +

(
1+

q>kHkqk

p>k qk

)
pkp

>
k

p>k qk
−
Hkqkp

>
k + pkq

>
kHk

p>k qk

Numerical experiments have repeatedly shown that BFGS has superior performance
in comparison to the DFP method.
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Quasi Newton Methods: The Broyden family

Broyden family update is obtained from combining the BFGS and the DFP method

Hφ = (1− φ)HDFP + φHBFGS

where φ can take any value.

An explicit representation of Broyden family can be shown to be

Hφk+1 = Hk +
pkp

>
k

p>k qk
−
Hkqkq

>
kHk

q>kHkqk
+ φτkvkv

>
k = HDFPk+1 + φvkv

>
k

where vk = pk
p>k qk

− Hkqk
τk

and τk = q>kHkqk

The parameter φ is, in general, allowed to vary from one iteration to another

A Broyden family is defined. by a sequence φ1, φ2, · · · , of parameter values.

A pure Broyden method is one that uses a constant φ

For φ = 0 we recover the DFP method

For φ = 1 we recover the BFGS method

For 0 6 φ 6 1, Hφ is positive definite

For φ < 0 and φ > 1 there is possibility that Hφ may become singular

In practice 0 6 φ 6 1 is usually imposed to avoid difficulties
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Numerical example
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Trust Region (restricted-step)methods

Trust region, or “restricted-step" methods are a different approach to
resolving the weaknesses of the pure form of Newton’s method, arising from
an Hessian that is not positive definite or a highly nonlinear function.
One way to interpret these problems is to say that they arise from the fact
that we are stepping outside a the region for which the quadratic
approximation is reasonable. Thus we can overcome this difficulties by
minimizing the quadratic function within a region around xk within which we
trust the quadratic model.

Consider xk+1 = xk + pk. The algorithm in the next slide we design pk using a
Trust Region method. Note that there are different variations of the Trust Region
method. Here we only present one of these method.
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A Trust Region algorithm

1 Select x0 and a convergence parameter ε > 0 and the initial size of the trust region, h0.
2 Compute g(xk) =∇f(xk). If ‖g(xk)‖ 6 ε then stop. Otherwise, continue.
3 Compute H(xk) =∇2f(xk) and solve the quadratic subproblem

pk = argmin
p∈Rn

q(p) = f(xk) + g(xk)
>p+

1

2
p>H(xk)p, s.t.

−hk 6 pi 6 hk, i = 1, · · · ,n, (pi is the ith element of p ∈ Rn)
4 Compute the ratio that measures the accuracy of the quadratic model,

rk =

actual function reduction︷ ︸︸ ︷
f(xk) − f(xk + pk)

q(0) −q(pk)︸ ︷︷ ︸
predicted function reduction

=
f(xk) − f(xk + pk)

f(xk) −q(pk)

5 Compute the size for the new trust region as follows:

hk+1 =


‖pk‖

4 if rk < 0.25,

2hk if rk > 0.75 and hk = ‖pk‖,
hk, otherwise.

6 Determine the new point: xk+1 =

{
xk if rk 6 0,

xk + pk otherwise,
7 Set k = k + 1 and return to 2.

Note: The initial value of h is usually 1. The same stopping criteria used in other
gradient-based methods are also applicable. 13 / 13


