
How to evaluate an optimization method

Does it converge to minimum?
How fast?
Practical issues: Is it easy to implement or tune?

We will see that all the methods we discussed converge to a minimum, but some
of them require the function f to have additional good properties.

Remark: We say x ∈ Rn is a limit point of a sequence {xk}, if there exists a
subsequence of {xk} that converges to x.
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Rate of convergence

Definition: Let {zk} converges to z̄. We say the convergence of order p(> 0) and
with factor γ (> 0), if ∃k0 such that ∀k > k0 we have

‖zk+1 − z̄‖ 6 γ‖zk − z̄‖p.

The larger the power p the faster the convergence.
For the same p, the smaller γ, the faster the convergence.
If {zk} converges with order p and factor γ, it also converges with order p̄ for
any p̄ 6 p.

Terminologies

If p = 1, and γ < 1, we say convergence is linear: limk→∞ ‖zk+1−z̄‖
‖zk−z̄‖ = γ < 1

If p = 1, and γ = 1, we say convergence is sublinear.

If p > 1, we say that the convergence is superlinear: limk→∞ ‖zk+1−z̄‖
‖zk−z̄‖ = 0

If p = 2, we say that the convergence is quadratic: limk→∞ ‖zk+1−z̄‖
‖zk−z̄‖2 <∞
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The local convergence analysis approach

Basic ingredients of our local rate of convergence analysis approach

Focus on a sequence {xk} that converges to a unique limit points x?

Rate of convergence is evaluated using error function E(x):

E : Rn → R such that E(x) > 0 ∀x ∈ Rn, E(x?) = 0.

Typical choices are
Euclidean distance: E(x) = ‖x− x?‖

Cost difference: E(x) = |f(x) − f(x?)|

Our analysis is asymptotic, i.e., we look at the rate of convergence of the tail
of the error sequence {E(xk)}

Convergence type
linear convergence : limk→∞ E(xk+1)

E(xk)
= γ < 1

superlinear convergence : limk→∞ Exk+1

E(xk)
= 0

quadratic: limk→∞ E(xk+1)

E(xk)
2 <∞
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Convergence of steepest descent algorithm for quadratic cost functions

Proposition: Consider f(x) = 1
2x

>Qx− b>x with Q > 0. For the steepest
descent algorithm with exact line search, αk = argmin f(xk − αk∇f(xk)), we have
xk → x?, starting from any x0 ∈ Rn (this is called global convergence).

Proof: let λ1 = λmin(Q) and λn = λmax(Q).

Note that from ∇f(x) = Qx− b. Therefore x? = Q−1 b. Because Q > 0,
f(x) is a strictly convex function. Therefore x? = Q−1b is the unique
minimizer of f(x), i.e, E(x) = f(x) − f(x?) > 0.

αk = argmin f(xk − αk∇f(xk)) = ∇f(xk)>∇f(xk)
∇f(xk)>Q∇f(xk) .

we can write f(x) =
1

2
(x− x?)>Q(x− x?)︸ ︷︷ ︸

E(x)

−
1

2
x?Qx?︸ ︷︷ ︸
f(x?)

E(x) = 1
2‖x− x

?‖2
Q = f(x) − f(x?)

Using xk+1 = xk −
∇f(xk)>∇f(xk)
∇f(xk)>Q∇f(xk)∇f(xk), we obtain

E(xk+1) =
(

1 −
∇f(xk)>∇f(xk)

(∇f(xk)>Q∇f(xk))(∇f(xk)>Q−1∇f(xk))

)
E(xk)
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Convergence of steepest descent algorithm for quadratic cost functions

Using Kantoraovich inequality

E(xk+1) 6
(
1 −

4λ1λn

(λ1 + λn)2

)
E(xk) = (

λn − λ1

λn + λ1
)2︸ ︷︷ ︸

β

E(xk).

note that β < 1.

E(xk+1) 6 βE(xk) or equivalently (f(xk+1) − f(x
?)) 6 β(f(xk) − f(x?)):

linear rate of convergence with factor β

if β is small, the rate of convergence is good.

Rate of convergence and condition number: κ(Q) = λn
λ1

β = (
λn
λ1

−1

λn
λ1

+1
)2 = (κ(Q)−1

κ(Q)+1
)2

the problems with large κ are referred to as ill-conditioned

Steepest descent algorithm converges slowly for ill-conditioned problems
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Convergence of steepest descent algorithm for quadratic cost functions

β = (

λn
λ1

− 1
λn
λ1

+ 1
)2 = (

κ(Q) − 1

κ(Q) + 1
)2
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Convergence rate of steepest descent algorithm for non-quadratic cost
functions

Consider cost function f ∈ C2 with a local minimizer x?. Let
∇2f(x?) > 0

λn = λmax(∇2f(x?))

λ1 = λmin(∇2f(x?)).

If {xk} converges to x? and its is generated by steepest descent algorithm
with stepsizes obtained from exact line search, then f(x) → f(x?), linearly
with convergence ratio no greater than β = (λn−λ1

λn+λ1
)2.
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Further convergence results

Proposition:Stationarity of Limit Points for Gradient Methods

Let {xk} be a sequence generated by a gradient method xk+1 = xk+αk dk,
and assume that {dk} us gradient related ∇f(xk)>dk < 0 and αk is chosen
by minimization rule, or the limited minimization rule, the Armijo rule or
Goldstein rule. Then every limit point of {xk} is a stationary point.
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Local convergence of Newton’s method

Theorem. (Newton’s method). Let f ∈ C3 on Rn, and assume that at the local
minimum point x?, the Hessian ∇2f(x?) is positive definite. Then if started
sufficiently close to x?, the points generated by Newton’s method
(xk+1 = xk − (∇2f(x?))−1∇f(xk)) converge to x?. The order of convergence is
at least two.

proof see page 247 Ref[2]
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