How to evaluate an optimization method

@ Does it converge to minimum?

o How fast?

@ Practical issues: Is it easy to implement or tune?
We will see that all the methods we discussed converge to a minimum, but some
of them require the function f to have additional good properties.

Remark: We say x € R™ is a limit point of a sequence {x;}, if there exists a
subsequence of {x} that converges to x.
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Rate of convergence

Definition: Let {z)} converges to z. We say the convergence of order p(> 0) and
with factor y (> 0), if kg such that Vk > ko we have

121 = 2] < vz — 2P

@ The larger the power p the faster the convergence.

@ For the same p, the smaller y, the faster the convergence.

o If {zx} converges with order p and factor v, it also converges with order p for

any p <p.

Terminologies

If p=1, and v < 1, we say convergence is linear. lim._, ., % =y<1
If p=1, and vy = 1, we say convergence is sublinear.

If p > 1, we say that the convergence is superlinear. lim._, ., “Z‘Z\‘ Liﬁ” =

If p =2, we say that the convergence is quadratic: limy ‘fl“w S ]

2P

2/90



The local convergence analysis approach

Basic ingredients of our local rate of convergence analysis approach

@ Focus on a sequence {xy} that converges to a unique limit points x*
@ Rate of convergence is evaluated using error function E(x):

E:R™ - Rsuchthat E(x) >0 VvxeR", E(x*)=0.

@ Typical choices are
o Euclidean distance: E(x) = ||x — x*||
o Cost difference: E(x) = |f(x) — f(x*)]
@ Our analysis is asymptotic, i.e., we look at the rate of convergence of the tail
of the error sequence {E(xy)}
o Convergence type
o linear convergence : lim; . [‘[\‘”\“}‘ “" =v<l1
: TEx
o superlinear convergence : lim, . ﬁ =0
e quadratic: lim ... L[‘\" é‘ < 00
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Convergence of steepest descent algorithm for quadratic cost functions

Proposition: Consider f(x) = xTQx —b"x with Q > 0. For the steepest
descent algorithm with exact line search, o, = argmin f(x) — o VFf(xk)), we have
Xy — X*, starting from any xg € R™ (this is called global convergence).

Proof: let A= }\min(Q) and A = }\max(Q)-

@ Note that from Vf(x) = Qx —b. Therefore x* = Q=1 b. Because Q > 0,
f(x) is a strictly convex function. Therefore x* = Q~'b is the unique
minimizer of f(x), i.e, E(x) = f(x) — f(x*) > 0.

Vf(xi) T VF(xk)

@ Xk = argmin f(Xk - OCka(Xk)) = Vi) TQOVT(xe)

1 1
@ we can write f(x) = §(x—x*)TQ(x—x*) —EX*QX*
S
E(Y) £(x*)

e E(x) = %||x—x*||%2 = f(x) — f(x*)

VF(xk) T VF(xk)

T o VI (XK, we obtain

[ Using Xk+1 = Xk —

(1 B Vi(xi) T VF(xx)
(VE(xi) TQVE(xic)) (VE(xi) TQ 1V (x4 )

E(xks1) =

JE(x)
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Convergence of steepest descent algorithm for quadratic cost functions

@ Using Kantoraovich inequality

AN A An — A1
E <(l-=——=)E =(—)E .
i) < (1= g e B = ()2 Bl
B

@ note that f < 1.

@ E(xiy1) < BE(xk) or equivalently (f(xx4+1) — f(x*)) < B(f(xk) — f(x*)):
linear rate of convergence with factor 3

o if B is small, the rate of convergence is good.

@ Rate of convergence and condition number: x(Q) = )}‘\—‘1‘
-1 2 k(Q)—1y2
° = (%H) = (m)

o the problems with large « are referred to as ill-conditioned

o Steepest descent algorithm converges slowly for ill-conditioned problems
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Convergence of steepest descent algorithm for quadratic cost functions

A
_omte (k(Q)—1,
p=a ) = )
fEH) - f(@) _ (ﬁ:(Q) - 1)2
f@) — @) = \&(@) +1

Upper Bound on Number of Iterations to Reduce
#(Q) = jmsx | Convergence Constant&|  the Optimality Gap by 0.10
1.1 0.0023 1
3.0 0.25 2
10.0 0.67 6
100.0 0.96 58
200.0 0.98 116
400.0 0.99 231
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Convergence rate of steepest descent algorithm for non-quadratic cost

functions

Consider cost function f € €2 with a local minimizer x*. Let
o V2f(x*) >0
© An = Amax(V2f(x*))
@ A1 = Amin(V2f(x4)).
If {x}} converges to x* and its is generated by steepest descent algorithm

with stepsizes obtained from exact line search, then f(x) — f(x*), linearly

with convergence ratio no greater than 3 = (;‘\"—:;\‘i)z
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Further convergence results

Proposition:Stationarity of Limit Points for Gradient Methods

Let {x\ } be a sequence generated by a gradient method Xy ;1 = x + o dx,
and assume that {dy} us gradient related Vf(xy) " dix < 0 and . is chosen
by minimization rule, or the limited minimization rule, the Armijo rule or
Goldstein rule. Then every limit point of {x;} is a stationary point.
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Local convergence of Newton’s method

Theorem. (Newton’s method). Let f € C3 on R™, and assume that at the local
minimum point x*, the Hessian V2f(x*) is positive definite. Then if started
sufficiently close to x*, the points generated by Newton's method

(xkr1 = xx — (V2f(x*)) "1V F(xx)) converge to x*. The order of convergence is
at least two.

proof see page 247 Ref[2]
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