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Common choices of the stepsize

Xk+1 = Xk — o B VF(x), Byx >0

o Exact line search: o = argminf(xx + ady)
«=>0

o A minimization problem itself, but an easier one (one dimensional).
o If f convex, the one dimensional minimization problem also convex (why?).
@ Limited minimization: oy = argminf(xy + ady)
x€l0,s]
(tries not to stop too far)

Constant stepsize: o« =s > 0 for all k
(simple rule but may not converge if it is too large or may converge too slow
because it is too small)
e Diminishing step size: ox — 0, and Y ;- ; & = co. For example oy = %
o Descent not guaranteed at each step; only later when becomes small.
e Y oy = oo imposed to guarantee progress does not become too slow.
o Good theoretical guarantees, but unless the right sequence is chosen, can also
be a slow method.
@ Successive step size reduction: well-known examples are Armijo rule (also
called Backtracking) and Goldstein rule
(search but not minimization)
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Stepsize selection via successive reduction: Armijo rule

@ It is an inexact line search method: it does not find the exact minimum but
guarantees sufficient decrease

@ computationally is cheap
@ Armijo parameters: 3 € (0,1) and o € (0,1)

Recall: g(0) = f(xx), 9'(0) = Vf(xi) T dx < 0 (dy is a descent direction)

g(e) = g(0) + 0g'(0)x

Armijo stepsize should satisfy:

@ g(&) < §(&) (ensure sufficient decrease)
@ g(yx) > g(yx) (ensure stepsize is not too small)

-1
where y = g .



Stepsize selection via successive reduction: Armijo rule

d(e) = g(0) + 0g’(0)ex

Armijo Line Search Algorithm :
@ Start with o, =s, 0< B <land0<o<1
Q If f(xi) — f(xi + aedi) > oo (—VF(xi) T di)
STOP

else
o < Boy and repeat

In practice the following choices are used

e B 1/2t01/10
@ o€ (10751071

@ if no bracketing is not use s =1 a/11



Stepsize selection via successive reduction: Armijo rule

Recall: g(0) = f(x), g’(0) = VFf(xi) T dy

Armijo: acceptable & should satisfy:

g(x) < g(0) +og’(0)x o Ot &di) = fa) < oaVf(x) " dy
g(ay) > g(0) + og’(0)(v&) f(xy +yady) — f(xi) > oyaVE(x) T dy
where 3 € (0,1) and 0 € (0,1), vy = %
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Stepsize selection via successive reduction: Goldenstein rule

Goldenstein

Set of Scalars >0 Satisfying
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Preliminaries (for constant step size)

Definition: a function f: R™ — R™ is called L-Lipschitz if and only if
[f0) = fYI < Llx =yl ¥x,y e R™
We denote the class of L-Lipschitz functions by Cp.

Lemma (Descent Lemma) Let f: R™ — R be continuously differentiable.
Consider any x,y € R™. Suppose that

IVf(x +ty) — VIl < Ltflyl, Vie (0,1
where L is some scalar. Then.
L
flcty) < 00+ V0O Ty + 5 [yl

or
fl2) < 10x) = V() (2 =) + ol x|,
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Admissible fixed stepsize with convergence guarantees for the steepest
descent algorithm

Consider the steepest descent method xy 11 = xx — «Vf(xy) with fixed stepsize «. Let
Vf(x) € CL and f* = minf(x) > —oo. Then the gradient descent algorithm with fixed
stepsize satisfying 0 < o < % will converge to a stationary point starting from any initial
condition.

Proof: Using the last lemma from the previous page we can write

flxx — aVE(xk)) — flxx) — VF(x) T (xk — aVF(xx) — xx) < %”Xk — aVf(xk) — xkl?
2
fxx — aVE(xx)) — flxi) < —aVF(x)TVF(x) + L%HVf(Xk)HZ
Lo

f(xpr1) — Fxx) < —(a — ||Vf xi) 12

2
To achieve reduction we need (o — L

) > 0, therefore 0 < o < % From the last inequality
above we also have

_ 2 X
£(%) — flxo) < — (XD Y 92 =

2
k=1
Z IV < g (Flx0) — Flxa0)
bounded
Therefore limy_ o || VT (xk )| = O therefore xoo = x*.
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Admissible fixed stepsize with convergence guarantees for the steepest
descent algorithm: special case of quadratic costs

Lemma

Consider a quadratic cost function f(x) = %XTQX +bTx+c, with Q > 0, and let x* be the
unique unconstrained minimizer of this cost function. Starting from any initial condition, the
following assertions hold:

(a) For the steepest descent algorithm with exact line search, we have xy — x* (this is called
global convergence).

(b) For steepest descent algorithm with fixed stepsize, we have global convergence if and only
if the stepsize o satisfies 0 < o < m

Note that
Vf(x)=Qx+Db

Therefore [[VF(x) — VF(y)[| = [|Qx + b — (Qy + b)[| = |Q(x —y)Il < IQIHIx —yl.
Since Q > 0, its norm is equal to its maximum eigenvalue, i.e., [|Q|| = Amax(Q). Therefore,

the proof of assertion (b) follows directly from the results in the previous page.
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Further convergence results

Proposition:Convergence of a Constant Stepsize

Let {x } be a sequence generated by a gradient method xy 1 = xx + o dx,
and assume that {dyx} us gradient related. Assume that for some constant
L > 0, we have

IVE(x) = Vi) <Llx —yll. Vx,y eR™,
and that for all k we have dy # 0 and
€ < ok < (2— €,
where
S = [Vf(xi) T didl
L[ dx[?
and e is a fixed positive scalar. Then every limit point of {xy} is a stationary
point of f.

For Steepest descent algorithm: e < o < 215 (set € = 0 to recover the
result we have obtained earlier)
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Further convergence results

Proposition:Convergence of a Diminishing Stepsize

Let {xi } be a sequence generated by a gradient method Xy ;1 = X + ot dx.
Assume that for some constant L > 0 we have

[Vf(x) = Vf(y)l < Lllx—yll, vx,yeR™,
and that there exists positive scalars ¢; and ¢, such that for all k we have
ol V)| < =VFla) Tdie,  [ldil? < eof| V() |12
Suppose also that

00
o — 0, Z X = 00.
k=0

Then either f(x)) — —oo or else {f(xy)} converges to a finite value and
Vif(xx) — 0. Furthermore, every limit point of {xy} is a stationary point of
f.
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