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Reading: Sections 7.1-7.5, 8.6, 8.8 of Ref[2].
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Unconstrained optimization

x* =argmin f(x)
xER™

@ x* € R™ Unconstrained local minimum of f if
Jde >0 s.t. f(x*) < f(x), Vx with [|[x —x*|| < €,
@ x* € R™ Unconstrained global minimum of f if
f(x*) < f(x), Vx € R™,
@ x* € R™ Unconstrained strict local minimum of f if
Je >0 s.t. f(x*) < f(x), Vx with ||[x —x*|| < €,

@ x* € R™ Unconstrained strict global minimum of f if

f(x*) < f(x), Vx € R™,
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Necessary conditions for optimality

OPT: x* =argmin f(x)
x€eR™

x € X (X is the set of constraints)
for X =R™ (problem becomes unconstrained)

D € R" is a feasible

direction at x € X for OPT

if (x+ «d) € X for

x € [0, X

Proposition:

o First order necessary condition (FONC) consider OPT and let f € Gt if x*
is a local minimizer for f then

Vi(x*)Td >0, VdeR"™ dis a feasible direction

@ Second order necessary condition (SONC) let f € €2 if x* is a local
minimizer for f then

(i) VF(x*)Td=0
(i) if Vf(x*) =0 = dTV?*f(x*)d>0VdeR"™ dis a feasible direction
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Necessary conditions for optimality

X* =argmin f(x)
xER™

Proposition (necessary optimality conditions)

Let x* be an unconstrained local minimum of f: R™ — R and assume that f is
continuously differentiable in an open set S containing x* , Then

Vf(x*) =0. (First Order Necessary Condition)
If in addition f is twice continuously differentiable within S, then

V2f(x*) : positive semidefinite. (Second Order Necessary Condition)

Proof: see page 13-14 of Ref[1].

Stationary point: Any point X € R™ that satisfies Vf(X) = 0 is called a stationary
point. A stationary point can be a minimum, maximum or saddle point of cost
function f.
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Sufficient conditions for optimality

Xx* =argmin f(x)
xER™

Proposition (Second order sufficient optimality conditions)

Let f: R™ — R be twice continuously differentiable in an open set S. Suppose
that a vector x* satisfies the conditions

Vi(x*) =0, V2f(x*) : positive definite.

Then, x* is a strict unconstrained local minimum of f. In particular, there exist
scalars y > 0 and € > 0 such that

F

, Vx with ||x —x*|| < e.

f(x) > f(x*) + %Hx—x*

Proof: see page 15 of Ref[1].
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Stationary points: example
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Note here that in all three of these cases x* satisfies FONC and SONC, but satisfying necessary

conditions does not mean that these points are minimizers. Note that x* does not satisfy the second
order sufficient conditions either.
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Singular and non-singular local minimum

@ Local minimum point that does not satisfy the sufficiency condition
Vf(x*) =0, Vf(x*) > 0 is called singular otherwise it is called nonsingular.

Singular local minima are harder to deal with
o In the absence of convexity of f, their optimality cannot be ascertained using
easily verifiable sufficient conditions

@ In their neighborhood, the behavior of most commonly used optimization
algorithms tends to be slow and /or erratic
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Convex sets and convex functions (see Appendix B of Ref[1])

@ Convex set QQ: The line connecting any point p, q € Q belongs to Q:

vp,qeC: (tp+(1—t)q)eQforte0,1].

D

A) Convex set (B)Non-convex set

@ Convex function: f is convex over convex set Q iff

fltxg + (1 —1)x0) <tf(xg) + (1 —1t)f(x2), Vxi,x € Q fortecl0,1].

1@
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Convex function

@ Convex function: f is convex over convex set Q iff

fltx:+ (1 —1t)xo) <tf(x1) + (1 —1)f(x2), Vxi,xp € Q forte[0,1].

1@

I T

@ When f is differentiable, it is convex over convex set Q iff

f(x) = f(xo) + VF(xg)(x —%xg), Vxp,x € Q.

convex function nonconvex function

@ When f is twice differentiable, it is convex over convex set Q iff

V2f(x) >0, Vxo,x € Q.
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Optimality conditions for convex functions

Proposition (Optimality conditions for convex functions)

Let f: X — R be a convex function over the convex set X.
(a) A local minimum of f over X is also a global minimum over X. If in addition
f is strictly convex, then there exists at most one global minimum of f.

(b) If fis convex and the set X is open, then Vf(x*) =0 is a necessary and
sufficient condition for a vector x € X to be a global minimum of f over X.

vy

Proof: see page 14 of Ref[1]
o for part (a) use flox* + (1 — a)X) < oof (x*) + (1 — ) f(X)

o for part (b) use f(x) > f(x*) + Vf(x*) T (x — x*), Vx € X.
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Numerical solvers (see Section 1.2 of Ref[1])

Iterative descent methods

@ start from xg € R™ (initial guess)

@ successively generate vectors xi, Xp, - - - such that
f(Xk+1) < f(Xk), k=012,

fx) = G4 [Bertsekas]

(R

X1 = Xk + o dy

Design factors in iterative descent algorithms:

@ what direction to move: descent direction

@ how far move in that direction: step size

11/19



Successive descent method

X1 = Xk + o dy
1st order Taylor series : f(xy11) = f(xi + o di) = f(xi) + i VE(xi) T die
for successive reduction: o VFf(xi) " dx <0

If VF(xi) # 0

@ 90° < /(dy, VF(xx)) < 270°: Vf(xk) ' d<0

@ by appropriate choice of step size o we can
achieve f(xp41) < f(xk)

Observations above lead to a set of gradient based
algorithms
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Steepest descent method

X1 = Xk + o die
1st order Taylor series : f(xy41) = f(xx + o di) & f(xx) + e VE(xi) T dic

for successive reduction: ocka(Xk)T di <0

de = —Vf(xi): —Vif(x)" Vf(xk) <0, Vf(xx)#0

Proposition d, = —Vf(xy) is a descent direction, i.e., f(xyx + o dy) < f(xy) for
all sufficiently small values of oy > 0.

Steepest Descent Algorithm
@ Step 0. Given xq, set k:=0
@ Step 1. dy := —VAf(xy). If dx =0, then stop.
@ Step 2. Solve o = argminf(xy + ady) for the stepsize o (chosen by an
exact or inexact Iinesearoc(h)
@ Step 3. Set xx 11 ¢ xx + axdyg, k< k+ 1. Go to Step 1.

Note: from Step 2 and the fact that dy = —Vf(xy) is a descent direction it
follows that f(xx1) < f(x1). 13/10



Steepest descent method

@ Steepest descent method can have slow convergence

Rosenbrock function:
f(x1,%2) = 100(x — %x3)2 + (1 — x1)?
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Newton’s method

X1 = Xk + o dy
\v/
AXk

2nd order Taylor series:

1
fxia1) = flxx + Axx) & h(Axy) = f(xi) + VE(xi) T Axy + EAxl—gvzf(Xk)AXk
For successive reduction: find the Axy from minimize h(Axy)

Axy

Vh(Ax) =0 = V2f(xi)Axi + VF(xi) = 0 = Axyc = —(V3f(xi)) "V F(xx)

Xir1 = Xk — (V2F(xx)) T VF(xx)
Newton's method
@ Step 0. Given xg, set k:=0
o Step 1. dy := —(V?f(xx)) *VF(xy). If di =0, then stop.
@ Step 2. Solver oy =1
@ Step 3. Set xy 1 < xx + ardy, k< k+ 1. Go to Step 1.
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Modified Newton’s method

2nd order Taylor series:
f(xrr1) = flxi + Axi) & h(Axi) = f(xi) + VE(xi) T Axic + Axy V2 (xi) Axic

X1 = Xk — (V(xx)) T VF(xk),

Note the following:

@ f(xy41) < f(xk) is not necessarily guaranteed

@ Algorithm can be modified to be x 1 = xic — ot (V2F(x3)) 1V F(xy),

@ Step 2 the should be modified to be

o Step 2. Solve o = argminf(xy — o (V2f(x)) "1V f(xx)) for the stepsize oy
(chosen by an exact or ?nexact linesearch)

Proposition If H(xy) = V2f(x;) is a symmetric positive definite matrix, then
dy ;= —H(x)"1Vf(xx)) is a descent direction, i.e., f(xy + o dy) < f(xx) for all
sufficiently small values of oy > 0.
proof: for di to be a descent direction we should show that Vf(xy) " dy < 0.
here: VF(xi) " di = —Vf(x) TH(x)"1Vf(xy). Because H(xy) is positive
definite, it follows that Vf(xy) T dx = —Vf(xi) TH(x)"1Vf(xx) < 0. Here we
used the fact that if a matrix is positive definite, its inverse is also positive definite
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Newton and modified Newton methods

@ Newton method typically converges very fast asymptotically
@ Does not exhibit the zig-zagging behavior of the steepest descent

@ on the down side: Newton’s method needs to compute not only the gradient, but
also the Hessian, which contains n(n + 1)/2 second order derivatives (numerically
expensive).

Example: f(x1,%p) = 1 — e~ (10xi+x3)
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Practical Stopping Conditions for Iterative Optimization Algorithms for

Unconstrained Optimization

In iterative algorithms typically the initial point is picked randomly, or if we have a
guess for the location of local minima, we pick close to them.

Stopping Criteria: The stoping condition is related to the first order optimality
condition of Vf(x) = 0. The followings are common practical stopping conditions
for iterative unconstrained optimization algorithms. Let € > 0:

o [[f(xk)ll <e

o close to satisfying first order necessary condition Vf(x) = 0.
If(xk41) — flx)l < €

o Improvements in function value are saturating.
[Xk41 —xkl| <€

o Movement between iterates has become small.

[ (xsesa) (x|
max LI )] S €

o A "relative" measure -removes dependence on the scale of f.
e The max is taken to avoid dividing by small numbers.

[1xwe 41—kl c
max{1,|[xk ||}

o A "relative" measure -removes dependence on the scale of x(k)
o The max is taken to avoid dividing by small numbers.
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