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Solution methods for
constrained optimization

* |dea: Seek the solution by replacing the
original constrained problem by a sequence of
unconstrained sub-problems
— Penalty method
— Barrier method
— Augmented Lagrangian method



Quadratic Penalty Method

Motivation:
* the original objective of the constrained optimization problem, plus

* one additional term for each constraint, which is positive when the
current point x violates that constraint and zero otherwise.

Most approaches define a sequence of such penalty functions,
in which the penalty terms for the constraint violations are
multiplied by a positive coefficient. By making this coefficient
larger, we penalize constraint violations more severely, thereby
forcing the minimizer of the penalty function closer to the
feasible region for the constrained problem. The simplest
penalty function of this type is the quadratic penalty function, in
which the penalty terms are the squares of the constraint

violations.



Penalty Method

Minimize f(x) subjectto (1)
XEQ)

The idea of a penalty function method:

replace problem (1) by an unconstrained problem of the
form

Minimize f(x)+c P(x) (2)
where c is a positive constant (penalty weight) and P is a
function on R" satisfying: (i) P is continuous, (ii)P (x)> 0
for all x€R"/Q), and (iii) P (x ) = 0 if and only if x€Q .




Quadratic Penalty Method

minimize f(x) subjectto

h.(x)=0, i=1,....m

gi(x) =0, j=1,...1
h 4

minimize f(x)+%§hi(x)2 + % g(max{O, g, (0}

Vv

C P(X)



Consider
min x; +x, subject toxi + x5 —2 =0, (1)

for which the solution is (—1, —1)” and the quadratic penalty function is

C

O (x; Ci:x1+x2+5(xf+x22—2)2.

(2)

We plot the contours of this function in Figures 2 and 3 . In Figure 2  we have
C = 1, and we observe a minimizer of Q near the point (—1.1, —1.1)7. (There is also a
local maximizer near x = (0.3, 0.3)”.) In Figure 3 .we have ¢ = 10, so points that do not
lie on the feasible circle defined by x7 + x3 = 2 suffer a much greater penalty than in the
first figure—the “trough” of low values of Q is clearly evident. The minimizer in this figure
is much closer to the solution (—1, —1) of the problem (1) . A local maximum lies near
(0,0)", and Q goes rapidly to co outside the circle x7 + x5 = 2. 9



min x; +x, subjectto x{ + x5 —2 =0, (1)
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Penalty Method

The procedure for solving problem (1) by the penalty
function method:

 Let{c}, k=1, 2,...,beasequence tending to infinity such
that for each k, ¢, >0, and c,,; > c,.

* Define the function
Q(x; c)=f(x)+c P(x)
* For each k solve the problem
Minimize Q(x; ¢,)
obtaining a solution c,.



Convergence Guarantees of the
Quadratic Penalty Method

Let X be the global minimizer of
minimize f(x) subject to (3)
h.(x)=0, i=1,...,m

C m
Suppose that each x, 1s the exact global minimizer of Q(x; ¢, )= f(x)+ 7”‘Ehi(x)2
i=1

for positive and monotonically increasing sequence of { ¢, }where ¢, | .

Then every limit point x~ of the sequence {x,} is a global solution of the

constrained optimization problem (3).
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ALGORITHMIC FRAMEWORK

A general framework for algorithms based on the quadratic penalty function
can be specified as follows.

(Quadratic Penalty Method).

Given € > 0, a nonnegative sequence {t;} with 7z — 0, and a starting point x;
fork=0,1,2,...
Find an approximate minimizer x; of Q(-; cy), starting at x;,
and terminating when ||V, Q(x; c )| < w3
if final convergence test satisfied
stop with approximate solution xi;
end (if)
Choose new penalty parameter Cyy > C4;
Choose new starting point x, ;3

end (for)

The starting point x°,; usually is selected to be x,




Convergence Guarantees of the
Practical Quadratic Penalty Method

Theorem- Suppose that the tolerances {7, }and penalty parameters { ¢, }satisty
7, — 0and c, | . Then if a limit point x™ of the sequence {x,} is infeasible,
it is a stationary point of the function ||h(x)||2 . On the other hand, if a limit point x”

is feasible and the constraint gradients VA, (x) are linearly independent, then x” is

a KKT point for the problem
minimize f(x) subject to
h.(x)=0, i=1,....m

For such points, we have for any infinite subsequence K such that lim,_, x, = x" that
lim,., ¢ h(x,)=A i=1,...m

where A’ is the multiplier vector that satisfies the KKT conditions

(first order necessery conditions for optimality) for the equality constrained problem.




Exact Penalty functions

It is possible to construct penalty functions that are exact
in the sense that

* the solution of the penalty problem vields the exact
solution to the original problem for a finite value of the
penalty parameter.

* With these functions it is not necessary to solve an

infinite sequence of penalty problems to obtain the
correct solution.

e Difficulty: these penalty functions are non-
differentiable.



Exact Penalty functions

minimize f(x) subjectto
h.(x)=0, i=1,....m
gi(x) =0, J=1,...r

v

minimize f(x)+ui|hi(x)| + c imaX{O,gj(x)}

. J/
'

c P(x)

Here, the solution of the penalty problem yields the exact solution to the original
problem for a finite value of the penalty parameter c.
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