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Problem definition

Static Average Consensus

Autonomous and cooperative agents

ẋi = −ci, xi, ci ∈ R

- xi: agreement state
- ci: driving command

Design ci = f (i, neighbors) s.t. ∀i ∈ {1, . . . , N}

xi(t)→ 1
N

N∑
j=1

uj, t→∞

1 u1

2u2 3 u3

4u4 5 u5

Applications: coordination and information fusion

multi-robot coordination

distributed optimization

distributed fusion in sensor networks

smart meters
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Static average consensus in the literature

Static average consensus is one of the most studied problems in networked
systems

Inspired by analysis of group behavior (flocking) in nature: Vicsek 95, Reynolds 87,
Toner and Tu 98

Mathematical models of static consensus and averaging: Jadbabaie et al. 03,
Olfati Saber and Murray 03 and 04, Boyd et al. 05

Previous literature:

Focus on convergence to consensus: time delay, switching, noisy links

Focus on increase rate of convergence,

No explicit attention to rate of convergence of individual agents

No explicit attention to limited control authority
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Problems considered in this talk

ẋi = −ci, xi, ci ∈ R

- xi: Agreement state - ci: Driving command

Design ci = f (i, neighbors) s.t.

1 u1

2u2 3 u3

4u4 5 u5

1 xi → 1
N

∑N
j=1 uj, t→∞, with rate βi

Agents with limited control authority opt for slower rate

Consistent response over different communication topologies

Control over time of arrival

2 xi → 1
N

∑N
j=1 uj, t→∞, even though ẋi = − satc̄i(ci)

Average consensus is achieved despite limited control authority
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Network model

Communication topology: weighted digraph G(V,E, A)

Node set: V = {1, · · · , N}

Edge set: E ⊆ V × V

Weights (for i, j ∈ {1, . . . , N})

aij > 0 if (i, j) ∈ E, aij = 0 if (i, j) /∈ E

Strongly connected: i→ j for any i, j

1

2 3

4

Weight-balanced:
N∑

j=1

aji =

N∑
j=1

aij, i ∈ V

Laplacian matrix: L = Dout − A

A : Adjacency matrix; D : out degree, Dout
ii =

N∑
j=1

aij, i ∈ V

5 / 21



Laplacian static average consensus

Laplacian algorithm: a solution by R. Olfati-Saber and R. Murray 2003, 2004

ẋi = −ci, xi, ci ∈ R

ci =

N∑
j=1

aij(xi − xj), xi(0) = ui

{
ẋ = −Lx, xi(0) = ui

x = (x1, · · · , xN)

1 u1

2u2 3 u3

4u4 5 u5Unbounded ci

Weight-balanced

Strongly connected

xi → 1
N

∑N
j=1 xj(0) = 1

N

∑N
j=1 uj as t→∞

Exponential convergence with rate λ̂2 = min{λ( 1
2 (L + L>)) > 0}

∣∣∣xi(t) −
1
N

N∑
j=1

uj
∣∣∣ 6 ∣∣∣x(t) − 1

N

N∑
j=1

uj1N

∣∣∣ 6 ∣∣∣x(0) − 1
N

N∑
j=1

uj1N

∣∣∣e−λ̂2t, t > 0
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Laplacian static average consensus: example

Response of Laplacian algorithm for two different graph topologies

1

2 5

3 4 λ̂2 = 1.38

1

2 5

3 4 λ̂2 = 0.5
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Static average consensus: controllable rate of convergence at each agent

Think about physical processes

ẋi = −ci×

Accommodate agents with limited control authority

Consistent transient across all communication topologies

Control over time of arrival

Every agent controls its own convergence rate
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Static average consensus: controllable rate of convergence at each agent

Problem Definition

ẋi = −ci, xi, ci ∈ R

- xi: Agreement state - ci: Driving command

Design ci = f (i, neighbors) s.t.

xi → 1
N

N∑
j=1

uj, t→∞ with rate βi, i.e.

∣∣∣xi(t) −
1
N

N∑
j=1

uj
∣∣∣ 6 κ∣∣∣xi(0) −

1
N

N∑
j=1

uj
∣∣∣e−βit

1 u1

2u2 3 u3

4u4 5 u5
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Static average consensus: controllable rate of convergence at each agent

Design methodology

Simplest dynamics: xi → 1
N

∑N
j=1 uj with rate βi

ẋi = −βi(xi −
1
N

N∑
j=1

uj)

Requirement: fast dynamics to generate 1
N

∑N
j=1 uj in a distributed manner!

Two-time scales:

Fast dynamics: ż = −Lz, zi(0) = ui : zi → 1
N
∑N

j=1 uj

Slow dynamics: ẋi = −βi(xi − 1
N
∑N

j=1 uj)
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Static average consensus: controllable rate of convergence at each agent

Proposed solution{
ε żi =

∑N
j=1 aij(zi − zj), zi(0) = ui,

ẋi = −βi(xi − zi), xi(0) ∈ R,
i ∈ {1, . . . , N}

Lemma

For strongly connected and weight-balanced digraphs, ∀ ε,βi > 0,

xi(t)→ 1
N

N∑
j=1

uj, as t→∞, i ∈ {1, . . . , N},

exponentially fast, with a rate min{βi, ε−1λ̂2}.

λ̂2 = min{λ( 1
2 (L + LT)) > 0}
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Static average consensus: controllable rate of convergence at each agent

Sketch of the proof:

ż = −ε−1Lz, zi(0) = ui ∈ R,

ẋi = −βi(xi − zi), xi(0) ∈ R.

Laplacian algorithm :∣∣∣zi(t) −
1
N

N∑
j=1

uj
∣∣∣ 6 ∣∣∣z(0) − (

1
N

N∑
j=1

uj)1N

∣∣∣e−ε−1λ̂2t, t > 0

Solution of the agreement dynamics:

xi(t) = xi(0)e−β
it + βi

∫ t

0
e−β

i(t−τ)zi(τ)dτ

For βi = ε−1λ̂2:

|xi(t) −
1
N

N∑
j=1

uj| 6 |xi(0) −
1
N

N∑
j=1

uj|e−β
it + tβiκze−β

it;

For βi 6= ε−1λ̂2:

|xi(t) −
1
N

N∑
j=1

uj| 6 κxe−β
it +

βiκz

βi − ε−1λ̂2
(e−ε

−1λ̂2t − e−β
it).

λ̂2 = min{λ( 1
2 (L + LT)) > 0}
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ż = −ε−1Lz, zi(0) = ui ∈ R,
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Problem Def.: A static average consensus algorithm with
controllable rate of convergence at each agent

ẋi = −ci, xi, ci ∈ R

- xi: Agreement state - ci: Driving command

Design ci = f (i, neighbors) s.t.

xi → 1
N

N∑
j=1

uj, t→∞ with rate βi.

1 u1

2u2 3 u3

4u4 5 u5

solution {
ε żi = −

∑N
j=1 aij(zi − zj), zi(0) = ui,

ẋi = −βi(xi − zi), xi(0) ∈ R,
i ∈ {1, . . . , N}

Rate of convergence of xi is min{βi, ε−1λ̂2}, then

ε 6
λ̂2

β̄
, β̄ = max{β1, · · · ,βN}

λ̂2 = min{λ( 1
2 (L + LT)) > 0}
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Extension to networks with noisy links, switching networks, time delays

An alternative proof of the convergence of the proposed algorithm:

ż = −ε−1Lz, zi(0) = ui ∈ R
ẋi = −βi(xi − zi), xi(0) ∈ R

pi = xi − 1
N

∑N
j=1 uj

−−−−−−−−−−−→
qi = zi − 1

N

∑N
j=1 uj

ż = −ε−1Lz
ṗi = −βi(pi − qi)

Laplacian algorithm: zi → 1
N

∑N
j=1 uj, (qi → 0), as t→∞, ∀i ∈ {1, . . . , N}

ṗi = −βipi is exponentially stable

ṗi = −βi(pi − qi) is a linear system with vanishing input

∴ pi → 0, (xi → 1
N

N∑
j=1

uj), as t →∞, ∀i ∈ {1, . . . , N}

Our proposed algorithm inherits any result related to noisy links, switching
networks, time delays of the Laplacian algorithm
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The proposed static average consensus: example

1

2 5

3 4 λ̂2 = 1.38

1

2 5

3 4 λ̂2 = 0.5

1

2 5

3 4 λ̂2 = 0.69

1

2 5

3 4 λ̂2 = 0.38

Desired rates and consistent transient are imposed by using ε = 0.1!
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Discrete-time implementation of the proposed algorithm

First-order Euler discretization with stepsize δ:

zi(k + 1) = zi(k) − δε−1
N∑

j=1

aij(zi(k) − zj(k))

xi(k + 1) = xi(k) − δ(βi(xi(k) − zi(k)))

Lemma

Let G be strongly connected and weight-balanced digraph topology

xi(0) ∈ R and zi(0) = ui ∈ R, i ∈ {1, . . . , N}

For a given ε > 0 and βi > 0, i ∈ {1, . . . , N}, choose δ ∈ (0, min{εdout
max

−1
, β̄−1}),

β̄ = max{β1, · · · ,βN}

xi(k), zi(k)→ 1
N

N∑
j=1

uj as k→∞, ∈ {1, . . . , N}

dout
max = maxi∈{1,...,N}{

∑N
i=1 aij}
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Problems considered in this talk
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1 u1
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Static average consensus: limited control authority

Think of physical processes: limited driving command

Slow rate helps but it is not enough

Problem Definition

ẋi = −ci, |ci| 6 c̄i

- xi: Agreement state
- ci: Driving command

Design ci = f (i, neighbors) s.t.

xi → 1
N

N∑
j=1

uj, t→∞

1 u1

2u2 3 u3

4u4 5 u5
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The proposed static average consensus is robust to saturation

{
ε ż = −Lz, zi(0) = ui,

ẋi = − satc̄i(βi(xi − zi)), xi(0) ∈ R,
i{1, . . . , N}

Lemma

∀ ε,βi > 0, xi(t), zi(t)→ 1
N

∑N
j=1 uj, as t→∞.

Sketch of the proof

pi = β(xi − 1
N

∑N
j=1 uj), qi = −βi(zi − 1

N

∑N
j=1 uj)

qi(t) is a bounded and qi(t)→ 0 as t→∞
ṗi = −βi satc̄i(pi + qi) is an ISS stable system (Sontag 94), i.e.,

pi → 0
(

xi(t)→ 1
N

N∑
j=1

uj
)

as t→∞
E. D. Sontag. On the input-to-state stability property. European Journal of Control, 1995.
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The proposed static average consensus is robust to saturation: example

Driving command is bounded

ẋi = − satc̄i(ci)
1

2 3 4 5 6

78910

Laplacian consensus

ci =

N∑
i=1

aij(xi − xj)

xi(0) = ui,

The proposed consensus{
żi = −

∑N
i=1 aij(xi − xj), zi(0) = ui,

ci = xi − zi, xi(0) ∈ R,
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Conclusion

Summary

We presented a distributed static average consensus algorithm which allows each
agent to choose its own rate of convergence

Our algorithm can be used to schedule the time of arrival of the agents to the
agreement value

Using our algorithm one can impose a consistent transient response over different
communication topologies

Our algorithm has intrinsic robustness against bounded driving commands

Our algorithm is suitable for networked systems of physical processes where
limited control authority exists most of the time

Future work

Stepsize characterization for discrete-time implementation when driving command
is bounded

Extension of the results to dynamic signals.
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