Singularly Perturbed Algorithms for

Dynamic Average Consensus

Solmaz S. Kia, Jorge Cortés, Sonia Martinez

=
UCSD

Mechanical and Aerospace Engineering Dept.
University of California San Diego
http://tintoretto.ucsd.edu/solmaz

European Control Conference,
July 18, 2013



Problem definition

Dynamic Average Consensus

@ Autonomous and cooperative agents

¥ ==, xcdeR

- x': agreement state
- ¢': driving command

@ Design ¢’ = f(i, neighbors) s.t. Vi € {1,...,N}

Applications: distributed fusion of dynamic and evolving information

@ multi-robot coordination

@ distributed tracking

@ sensor fusion

@ feature-based map merging



Dynamic average consensus in the literature

Previous literature

@ Focus on convergence to consensus

e Specific initialization conditions: Spanos et al. 05, Zhu and Martinez 10

@ Specific set of inputs: Spanos et al. 05, Olfati-Saber and Shamma 05

Track with s.s. error: Olfati-Saber and Shamma 05, Spanos et al. 05, Freeman et al. 06,
Zhu and Martinez 10

@ Require knowledge of the dynamics generating inputs: Bai et al. 10

o Inputs with bounded derivatives: all of them

@ No explicit attention to limited control authority

@ No explicit attention to rate of convergence of individual agents



This talk

@ Dynamic average consensus with pre-specified rate
of convergence f:
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@ Network of agents with limited control authority;

Control over time of arrival
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@ Dynamic average consensus with pre-specified rate

of convergence B’ at each agent:
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o Network of agents with different levels of control
authority; Control over time of arrival of each agent

Design tool: singular perturbation theory



Network model

Communication topology: weighted digraph G(V, £, A)
@ Node set: V={1,---,N}

@ Edgeset: ECVxV
@ Weights (fori,j e{1,..., N})
a;>0if (i,j) €& a;=0if (i,j) ¢ ¢ E -@

@ Strongly connected: i — j for any i,j

@ Weight-balanced:

N N
E aj = E ajj, ieV
J=1 Jj=1



Dynamic average consensus with pre-specified rate of convergence

Goal: Dynamic average consensus with pre-specified rate of convergence f3:
1 & 1 &
i j < i j —Bt
‘x — N j:El u’(t)‘ < k‘x (0) — N E u’(O)‘e

j=1

Design methodology

@ Simplest dynamics: x' — ﬁzj’.v:] i (t) with rate
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Dynamic average consensus with pre-specified rate of convergence

Goal: Dynamic average consensus with pre-specified rate of convergence f3:
1 & 1 &
i j < i j —Bt
‘x — N j:El u’(t)‘ < k‘x (0) — N E u’(O)‘e

Jj=1

Design methodology

@ Simplest dynamics: x' — ﬁzj’.v:] i (t) with rate
1 & 1 o
i i j _ )
i = B(x Nj:Zlu’)—l—Nj:Zlu

@ Requirement:

- fast dynamics to generate B Y I, + 4 Y, i/ in a distributed manner !



Dynamic average consensus with pre-specified rate of convergence

Design methodology
@ Desired dynamics: &' = —(Bx'— (31 ),/ + L5 ' V)

@ Requirement: fast distributed dynamics to generate 4 5 1/ + L Y i




Dynamic average consensus with pre-specified rate of convergence

Design methodology
@ Desired dynamics: &' = —(Bx'— (31 ),/ + L5 ' V)

@ Requirement: fast distributed dynamics to generate f+ Z; A Z] N7

@ Two-time scale algorithm:
o Initialize atk = 0, x'(0) € R
e Fast dynamics: at each time k, obtain (k) and i/ (k). Vi € {1,...,N}, run
g = —(d = Bul () — i (1) — Xy a(d — &) = ZL oy (v = )
vi= va=l aji(zi —7)
1

N
k) > By Y W)+
Jj=1 J

i/ (k), exponentially as 1 — oo, (Due to [a])

™=

1

@ Slow dynamics: x'(k + 1) = x' (k) — Ar(Bx' (k) — 7' (k))

@ k+k+1

[a] R. Freeman et al., “Stability and convergence properties of dynamic average consensus
estimators,” CDC 2006



A dynamic average consensus with pre-specified rate of convergence

An average consensus with pre-specified rate of coverage

@ Fast dynamics: at eachtime k, Vi € {1,...,N}

{Zi = (& = Bu' (k) — il (k) — 2Ly (e =) = T, ay(v = V)

V=3 L aild =)

@ Slow dynamics: x'(k + 1) = x'(k) — At(Bx (k) — Z/(k))

Innovation

@ Combine the fast and slow dynamics in one continuous-time algorithm
@ No need to wait for fast dynamics to converge to take steps in the slow dynamics

@ Design is based on singularly perturbed systems



Singular perturbation

x=f(t,x,z), xeR"
ez=g(t,x,z), ze R",
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Singular perturbation

x=f(t,x,z), xeR" e=0 x=f(t,x,z), xR
ez=g(t,x,z), zeR", = o(t.x.2

Slow dynamics:
g(t,x,z) =0=z=h(t,x)

X =f(t,x, h(z,x))



Singular perturbation

x=f(t,x,z), xeR" e=0 x=f(t,x,z), xR
ez=g(t,x,z), zeR", = o(t.x.2

Slow dynamics:
g(t,x,2) =0=z="h(t,x)

X =f(t,x, h(z,x))

Fast dynamics: fixed (¢, x(z)) and T = /€

dz

E— t
y glt,x,2)



Singular perturbation on infinite intervals

Full dynamics:

Slow and fast dynamics
x=f(t,x2), X =f(t,x, h(t,x))
ez=g(t,x,2) £ =gltx2)

Solution : x(¢, €) Solution : X(t)

For[t,x,z— h(t,x), €] € [0,00) x Dy x D, x [0, &)
@ On any compact subset of D, x Dy:

e continuous and bounded: f, g, Of|ax,0z,0¢, 08lox,0z,0¢,01
e bounded partial derivative w.r.t arg: h(t,x), 0g(t,x,z,0)/0z
@ 0f(t,x,h(t,x),0)/0x is Lipschitz in x, uniformly in t,

@ The slow dynamics is exponentially stable

@ The fast dynamics is exponentially stable
Foranyt, > 0,3€* s.t. for0 < e < €* we have

x(t,€) —x(t) € O(e), 1€ [ty,o0)
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Proposed dynamic average consensus algorithms with pre-specified rate of

convergence

A singularly perturbed dynamic average consensus: pre-specified rate of
coverage (3

@ Ist-Order-Input Dynamic Consensus (FOI-DC)

et = —(F+pu i) = X a5z —F) — XL, ay(v — V),
evi= vazl aji(zi - Zj)y
¥=—px -7
@ 2nd-Order-Input Dynamic Consensus (SOI-DC)
{eéi = —(Zi + l?) u' + ul) - vazl aij(zi - Zj) - Ziv:l aij(vi - Vj) - €(f) i + i'ii)'

evi=YN ailz —7),

i

i =-—Bx—7,

Convergence analysis: using singular perturbation theory
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Convergence analysis of the proposed algorithms

@ FOI-DC
{w ==&+ pu i) = 3yl =) = T ey (v =),
evi=3 1 ai( -7,
i=—px -7,
@ SOI-DC

e =—(Z+Bu+i) =YV ayld —F) = YV ay(vi — V) — e(Bi +iil),
ui N i j
evi=3 L a4z —7),
i = —[Sxi —7,

@ Let§ be a strongly connected and weight-balanced digraph
@ FOI-DC:ii andii’ continuous and bounded fort > 0
@ SOI-DC: i and i are continuous and bounded fort > 0

Then, 3e* > 0 s. t., forall e € (0, €*], x'(0), Z/(0), vI(0) e R, Vi € {1, ..., N}

1 o 1<
[x'(z, €) Zu’ | <o(e)+|¥( )—NZM(0)|e*B’,
_]:1 Jj=1
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Convergence analysis of the proposed algorithms

Sketch of proof:

@ Fast dynamics is exponentially stable (t = t/¢)

d7 Jdt=—(7 + Bu' + ’;‘i)_Zi‘V:l a;(7 — zj)—zg\’:l a;(vi—vi),
d'\/i/dT:Z?]:] aj,-(z"fzf'),

Setting e =0: 2 =B+ Y " W+L Y Y W, Vie{l, ..., N}

@ Slow dynamics is exponentially stable
1 N 1 N 1 N 1 N
i i j - i j i j -B
i ——B(x —N;w) +N;w > 0 = 5 X w0] < W0) - 5 3 wlo)]e
@ Lipschitz and continuity conditions are satisfied

x(t,e) —x(t) € 0(e)
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Simulation: FOI-DC

@ N =100

@ random connected graph

@ ui(t) =d sin(b' t+ )

a ~U[-5,5]
b ~U[1,2]
¢t~ U0, /2]
-\
_20 s 10
e =0.00land B =1
1l e ] error
1 B : faster convergence -

% 5 10

t
e =0.00land B =3
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Convergence analysis of SOI-DC for inputs differing by static values

Lemma

efd =—(Z+Buw+i)— Y, a5(d —2) - T, ay(v' — ¥) — e(B i + ),
e
evi=) . aild =),

=7

¥ =—px -7,
@ Let§ be a strongly connected and weight-balanced digraph

@ u(t)=u(t)+u, i =0,Vie{l,..., N}

Proof is based on Lyapunov approach!

15/19



Simulation: SOI-DC for inputs differing by static values

[ === FOLDC —— SOLDC |

-
8
b
@— |
20
ul(£)=5sin(1)+1, e=landp =1
w?(t)=S5sin(t)—1,
(1) =5sin(t) +4, 5
u*(t)=5sin(¢)+5, 5
w () =5sin(z)+10. H
o,
0 10 20

t

e=00landp =1

SOI-DC tracks regardless of value of ¢
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A dynamic average consensus with pre-specified rate of convergence at each
agent

Lemma

€'i/i = vazl aji(zi _Zi)v

ey =—0 +i) — YV a;( — V) — XX ay(w — W),
ep' = Zf\]:l ai(y' =),

)'Ci:_Bixi_BiZi_yi

fet =ttt )T,

@ Let§ be a strongly connected and weight-balanced digraph

@ Assume il andii’ continuous and bounded fort > 0

Then, Ye > 0 and B’ > 0 and, x'(0),z'(0),v'(0) e R, Vi € {1, ...,N}

N N ‘
(1, e) — %;M(zn <0(e) + ¥ (0) — %;M(onefﬁ‘n




Simulation: agents set their own rate of convergence

u (1) =5sin(t)+ 25 +1,

u? (1) =5sin(1)+ 0.5r—1,

u3 () =5sin(t) + cos(0.5¢) +4,
(1) (

w (1) (

t)=5sin(t)+ log(r + 1)+5,
t)=>5sin(r)+ atan(r)+10.

eyt ox? ayd vyt ey’ —input average
1% 10 20
t

e=00land B! =12, B2=1, B3 =05, p* =04, > =02
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Simulation: agents set their own rate of convergence

-10

1)=5sin(t)+ 1% +1,
t)=5sin(t)+ 0.5¢—1,
t) =5sin(¢)+ cos(0.57) +4,
(
(

t)=5sin(t)+ log(r + 1)+5,
t)=5sin(r)+ atan(z)+10.

V'x B x

5 —input average

10 20
t

e=00land B! =12, B2=1, B3 =05, p* =04, > =02

Control over rate of convergence ~ Control over time of arrival!
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Conclusion

Summary

@ We presented a distributed dynamic average consensus algorithm with
pre-specified rate of convergence

@ We provided a variation which allows each agent to choose its own rate of
convergence

@ Our algorithm is suitable for networked systems with limited control authority

Future work
@ Quantifying the O(¢€)
@ Rigorous treatment of switching topologies

@ Relaxing boundedness and continuity conditions of (i, ii')
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