
APPEARED IN IEEE TRANSACTION ON AUTOMATIC CONTROL, VOL. 56, NO. 9, MONTH 2011 1

Multi-stage Anti-Windup Compensation for

Open-loop Stable Plants

Solmaz Sajjadi-Kia and Faryar Jabbari

Abstract

e discuss the benefits of adding a measure of scheduling to the popular Anti-Windup design. The

main idea is to develop a scheme in which the Anti-Windup gains depend on how much the actuator

command exceeds the saturation bound. The aim is to design and implement more aggressive Anti-

windup gains in lower levels of saturation. Global stability and performance is addressed by adding

an outer-loop Anti-windup compensation which become active when the system is in higher levels of

saturation. We present results for both static and dynamic Anti-Windup gains, along with the convex

synthesis LMIs. Benefits of the proposed design method over the traditional single gain Anti-Windup

compensation are demonstrated using well-known examples.

Index Terms

Saturation, Anti-Windup (AW), Scheduling, L2 Gain.

I. INTRODUCTION

Anti-Windup (AW) augmentation often is used for safety and performance degradations as-

sociated with actuator windup, when high performance linear controllers encounter actuator

saturation. Generally, AW schemes are designed with two goals: 1) as long as system actuators

do not saturate, the system closed-loop response coincides with the linear unconstrained response;

2) if the actuators saturate, stability is preserved and performance is recovered as much as possible

([1]). An excellent set of discussions and references on AW design can be found in [2], [3], [4],
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Fig. 1. Typical Anti-Windup set up

[5], [6], [7], [8], [9]. In most cases, the AW augmentation is a single controller (or set of gains)

that is applied for all initial conditions, reference signals and disturbance levels. For such global

results, typical performance guarantees are no better than those from the open-loop system.

Naturally, stronger results can be obtained if reference signals or disturbances are assumed to

have peak or energy bounds ([10]). Such techniques can be combined with the results presented

here, by adding conditions that bound the reachable sets, which in turn bound the signals and

states. For brevity, we focus on the global case here.

The main observation, here, is that in many applications saturation can be mostly mild and

thus the command to the actuator rarely would exceed the saturation bound by a large margin.

In such cases, it seems intuitively clear that using different gains for the rare cases might allow

a more aggressive and higher performance gain for the situation where the commands are only

slightly larger than the actuator limitations. This leads to, in essence, a form of scheduling of

the AW gains based on the level of saturation. This is the main tack in this paper.

The idea of using scheduling in the traditional AW setting has been attempted before. For

example, in [11] scheduling is used to improve the system performance after it re-enters the

small signal domain. Another approach can be found in [12], in which a family of controllers

are used to develop a scheduling approach in dealing with saturation, though the overall technique

is quite different from the concept of Anti-Windup used here. While the approach in [12] has

the important advantage of being applicable to open-loop unstable systems, its implementation

is rather involved and requires considerable on-line computation and often cannot match the

high performance of nominal linear controllers in small signal regions. Other approaches to

the AW design can be found, e.g., in [13] which considers simultaneous design of linear and

AW controller together, or [14] where a nonlinear state-feedback control law for the global

asymptotic stabilization of non-exponentially unstable plants is proposed. Similarly, use of self
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Fig. 2. Anti-Windup scheme: ud ∈ [−ulim

gd
, ulim

gd
], û ∈ [−ulim, ulim]

(or gain)-scheduled techniques to obtain AW gains is explored in [15] and [16].

Here, we are mainly interested in improving the performance of AW schemes through simple

and easy to implement modifications. In a somewhat related approach, in [17] a modified AW

scheme is proposed which allows the saturated system to take advantage of the robustness of the

nominal controller in the moderate saturation regime, and applies the AW when system faces

substantial performance degradation. The main idea behind [17] was to use the high performance

nominal controller even after initial saturation since, in all likelihood, a good nominal controller

possesses reasonable performance robustness to the nonlinearity caused by saturation (a form

of benign, ‘matched’ uncertainty). While this can be shown to improve the performance, it still

relies on one set of AW gains for all levels of saturation.

We focus on developing an approach that provides performance guarantees for the large signal

operation of open-loop stable systems, yet allows higher performance gains when the command

to the actuator is only modestly above the saturation limits. This is through use of multiple

sets of AW gains (as shown in Fig. 2): for moderate levels and for severe levels of saturation.

By placing more weight on the gains associated with the moderate level of saturation, one can

expect better performance in this level, particularly if this is the normal envelop of operation.

The overall stability and some performance when the command signal exceeds the saturation

bound significantly are guaranteed by another set of gains.

For simplicity, and to stay close to the basic concept of AW, we start by considering the

case in which all gains are static. We show that the gains can be obtained from relatively

straightforward linear matrix inequalities where the complexity of the resulting search is only

modestly higher than the traditional AW case. The implementation of the proposed scheme is
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quite straightforward and similar to the standard AW. Finally, for ‘all static’ gains we show

that the existence condition of the proposed scheduled approach is the same as the one for the

traditional static AW compensation (Fig. 1).

It is well known however, that in some problems the traditional static AW compensation (Fig.

1) is not feasible, while a dynamic AW augmentation only requires open-loop stability, as a

sufficient condition for feasibility. We show that by letting one of the loops to include dynamic

AW, we also can extend the scheduling approach so that open-loop stability leads to feasibility

of the scheduled AW.

II. PROBLEM DEFINITION AND BASIC SETUP

Consider the following open-loop stable system with state vector xp ∈ Rnp , control input

vector û ∈ Rnu , and exogenous input vector w ∈ Rnw (e.g., reference signal, noise, external

disturbance, etc.):

Σp ∼


ẋp = Apxp +B1w +B2û

y = C2xp +D21w +D22û

z = C1xp +D11w +D12û

. (1)

The nominal controller, designed to fulfill a specific task such as tracking or disturbance

regulation for this system, is likely to saturate. As a result, it needs to be augmented with

an AW protection loop. The AW commands are introduced to the nominal controller by adding

signals η1 and η2 to the state and output equations of the nominal controller (i.e., the nominal

controller is recovered when η1 = η2 = 0):

Σc ∼

 ẋc = Acxc +Bcyy +Bcww + η1

u = Ccxc +Dcyy +Dcww + η2
(2)

where xc(t) ∈ Rnc is the controller state vector and u ∈ Rnu is the output vector of the

controller. The saturation nonlinearity is assumed decentralized with the saturation limit ulim for

each ui (i = 1, 2, ..., nu); i.e., ûi = sat(ui) = sgn(ui)min{|ui|, ulim}.

In traditional AW scheme (Fig. 1), AW commands are normally generated using only one

set of gains designed to ensure global stability and graceful performance degradation even for

arbitrary large commands/disturbances. In this paper, we use more than one set of gains. As a

start, we consider the case where two sets of gains are obtained: one for the case when the control

DRAFT



APPEARED IN IEEE TRANSACTION ON AUTOMATIC CONTROL, VOL. 56, NO. 9, MONTH 2011 5

command is moderately above the saturation limit, and another when the control command is

significantly larger.

Consider Figure 2. To separate the activation of AW gains into two different levels of saturation,

we have added an artificial saturation box with a larger saturation bound, 1
gd
ulim where 0 < gd ≤

1. For moderate levels of saturation, i.e., when the magnitude of the command signal is between

ulim and 1
gd
ulim, we use AW gain Σaw and the signal to activate this AW gain is q = ud − û,

where ud is the output of the artificial saturation box. If the actuator command goes beyond
1
gd
ulim, then q̃ = u− ud 6= 0 and both q and q̃ activate their respective AW gains, Σaw and Σ̃aw.

The main benefit of the first, artificial, saturation box is to bound the sector nonlinearity,

associate with the actual saturation box, away from 1 since it limits the magnitude of the signal

which will enter the actual saturation ud (associated with the actuator) to 1
gd
ulim. Then, it is

straightforward to show that

(q, ud) ∈ [0, sd] =⇒ qT (q − sdud) ≤ 0, where sd = 1− gd (3)

Absent any assumptions on the reference and disturbances signals, there is no a priori bound on

the signal u. Therefore, the sector bounds on the artificial saturation is

(q̃, u) ∈ [0, 1] =⇒ q̃T (q̃ − u) ≤ 0 (4)

The two sector conditions separate the task of dealing with moderate signals to Σaw where it

deals with a nonlinear element with more limited sector nonlinearity, while substantially larger

signals will also activate Σ̃aw. One can expect that this will allow a more effective and aggressive

Σaw for moderately saturated command signals (see Table 1 of [18] and the numerical examples

below). Now considering the signals in Fig. 2, we have q = ud − û and q̃ = u − ud, thus

ud = u− q̃, and û = u− (q+ q̃), while the AW signals entering the compensator dynamics; i.e.,

η1 and η2, satisfy η = +Σ̃aw(q̃) + Σaw(q), with η = [ηT1 ηT2 ]T . Then, the plant and controller

equations can be written as:

Σp ∼


ẋp = Apxp +B1w +B2(u− (q + q̃))

y = C2xp +D21w +D22(u− (q + q̃))

z = C1xp +D11w +D12(u− (q + q̃))

(5)
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Σc ∼

 ẋc = Acxc +Bcyy +Bcww + [I 0](Σ̃aw(q̃) + Σaw(q))

u = Ccxc +Dcyy +Dcww + [0 I](Σ̃aw(q̃) + Σaw(q))
(6)

In the next section, we focus on the static compensation. Dynamic gains are discussed in Section

IV. Also, in the following, for simplicity, we mostly consider the single actuator systems first.

The expansion to the multi-actuator case is straightforward and will be discussed later.

III. STATIC AW GAINS

A. Synthesis

The simplest AW form in terms of design and implementation is static gain. Here, we obtain

synthesis LMIs for the scheduled AW scheme of Fig. 2 when Σaw and Σ̃aw are considered

static gains −Λ and −Λ̃, respectively (i.e. Σaw(q) = −Λq and Σ̃aw(q̃) = −Λ̃q̃). In this case,

by selecting x = [xTp xTc ]T and using w, q and q̃ as input, we can represent the augmented

closed-loop system, Σ, in the following state space form:
ẋ = Ax+Bww + (Bq −BηΛ)q + (Bq −BηΛ̃)q̃

z = Czx+Dzww + (Dzq −DzηΛ)q + (Dzq −DzηΛ̃)q̃

u = Cux+Duww + (Duq −DuηΛ)q + (Duq −DuηΛ̃)q̃

(7)

The matrices A, Bw, etc. are known matrices in terms of plant and nominal controller gains

(see Appendix I). To establish a performance bound for the AW and ensure stability, L2 gain

from w to z is typically considered. A variety of other measures, such as energy-to-peak or

peak-to-peak, can be handled easily but for brevity we discuss only the L2 gain. Following the

standard approach, by relying on quadratic Lyapunov function V = xTQ−1x with Q > 0, an

estimate for the L2 gain from w to z, γ̃, can be obtained using the following standard inequality:

d

dt
(xTQ−1x) + γ̃−1zT z − γ̃wTw < 0 (8)

Here, the two nonlinear elements satisfy the sector conditions in (3) and (4). Invoking S-

procedure for some positive scalar W̃ and Wo, we can use the following sufficient condition to

ensure (8):
d
dt

(xTQ−1x) + γ̃−1zT z − γ̃wTw − 2qTWo(q − sdud)

−2q̃T W̃ (q̃ − u) < 0
(9)
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Since ud = u− q̃, and using W = Wosd, we can rewrite (9)

d
dt

(xTQ−1x) + γ̃−1zT z − γ̃wTw − 2qTW (s−1
d q − u+ q̃)

−2q̃T W̃ (q̃ − u) < 0

Using (7), this inequality can be expanded into the typical form of pT (H + γ̃−1hhT )p < 0

where pT = (xT wT qT q̃T ) with a sufficient condition of H + γ̃−1hhT < 0 (details are routine

and are omitted). Applying the Schur complement formula, one gets the equivalent form of

Ω =

 H h

hT −γ̃

 < 0. Next, we apply the congruent transformation of T TΩT with T =

Diag[I, I, I,W−1, W̃−1]. After defining M = W−1, M̃ = W−1, X̃ = Λ̃M̃ and X = ΛM, we

get



AQ + QTA ? ? ? ?

BT
w −γ̃I ? ? ?

CzQ Dzw −γ̃I ? ?

Φ4,1 Duw MDT
zq − XTDT

zη Φ4,4 ?

Φ5,1 Duw M̃DT
zq − X̃T

DT
zη Φ5,4 Φ5,5


< 0 (10)

where
Φ4,1 = MBT

q − XTBT
η + CuQ, Φ5,1 = M̃BT

q − X̃T
BT
η + CuQ

Φ4,4 = He{−s−1
d M +DuqM−DuηX}

Φ5,4 = −M̃ +DuqM + M̃DT
uq −DuηX− X̃T

DT
uη

Φ5,5 = −2M̃ +DuqM̃ + M̃DT
uq −DuηX̃− X̃T

DT
uη

The sub-block (4:5,4:5) ensures the well-posedness of the closed-loop system under the scheme

of Fig. 2 (see [19] for details). By minimizing γ̃ with the constraint (10), we obtain the stabilizing

gains with guaranteed performance level of γ̃ as

Λ̃ = X̃M̃−1
, Λ = XM−1 (11)

One can put more emphasis on the performance level in the moderate levels of saturation (i.e.,

|u| ≤ 1
gd
ulim) by the following approach. We start by assuming, for now, that somehow it can

be guaranteed (without using an artificial saturation element) that the command to the actuator

ud satisfies |ud(t)| ≤ 1
gd
ulim (or, equivalently, u(t) in Fig. 1 satisfies this bound). In that case,

we could design a more aggressive AW gain Λ, since, now, there is no Λ̃ loop. Parallel to

DRAFT



APPEARED IN IEEE TRANSACTION ON AUTOMATIC CONTROL, VOL. 56, NO. 9, MONTH 2011 8

development above using x = [xTp xTc ]T with w and q as inputs, we can represent the closed-

loop system (1), (2), with η = −Λq, in moderate levels of saturation by (7) where q̃ is set

to zero. To establish a performance bound for the AW and ensure stability, we again rely on

quadratic Lyapunov function V = xTQ−1x. However, as we discussed, if the magnitude bound

is in effect, we have (q, ud) ∈ [0, sd]. As a result, we have qTWo(q − sdu) < 0 where Wo > 0.

Invoking S-procedure, inequality

d

dt
(xTQ−1x) + γ−1zT z − γwTw − 2qTWo(q − sdu) < 0 (12)

is the sufficient condition for inequality (8). Expanding this inequality and preforming proper

congruent transformations, inequality (12) can be written in the LMI below with M = (sdWo)
−1

and X = ΛM 
AQ + QTA ? ? ?

BT
w −γI ? ?

CzQ Dzw −γI ?

Φ4,1 Duw MDT
zq − XTDT

zη Φ4,4

 < 0 . (13)

Of course, using inequality (13) alone does not guarantee the stability and performance since

it is based on the assumption on the magnitude of the command. One way to ensure overall

stability and performance is to combine the two inequalities (13) and (10). To ensure a unique

Λ, we need to use the same M and X in (13) and (10), though we can use different Lyapunov

matrix in (13) to reduce conservatism (denoted by Q̄). This results in the following:

Minimize c̃ γ̃ + c γ (with c̃ > 0, c > 0) subject to (14)

LMI (10) and (15)


AQ̄ + Q̄T

A ? ? ?

BT
w −γI ? ?

CzQ̄ Dzw −γI ?

MBT
q − XTBT

η + CuQ̄ Duw MDT
zq − XTDT

zη Φ4,4

 < 0 (16)
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Inequality (15), as before, ensures that the closed-loop in Fig. (2) is stable with an L2 gain of

γ̃, while (16) indicates that the L2 gain would have been γ if the command magnitude remains

below 1
gd
ulim. Buy using larger values for c, one can seek lower values for γ (i.e., more aggressive

AW for moderate saturation cases), at a cost of larger γ̃ which is the guaranteed L2 gain of the

closed-loop. It is important to note that the only performance guarantee, i.e., the one without any

assumptions or conditions, is γ̃. The gain γ is best described as a measure of the aggressiveness

and effectiveness of Λ.

Remark 1. The levels of saturation are defined and separated by the choice of sd (or gd). Smaller

values of sd result in less restrictive sector condition for the inner loop and therefore, one can

expect to obtain more aggressive gains for inner loop. This design parameter can be selected

based on the operating envelop of the system, e.g., if the saturated system is more often in the

lower levels then we can pick a small value for sd and get aggressive gains (higher performance)

in this region.

Remark 2. For multi-input systems, one only needs to replace the sector end for the moderate

levels of saturation, sd, in all of the equations by the diagonal matrix SD, where each diagonal

entry is sdi = 1−gdi with gdi the design point for artificial saturation elements, while the weights

W and W̃ will be diagonal positive definite matrices. Furthermore, it is relatively straightforward

to see that one can insert additional artificial boxes, which will result in additional rows and

columns in the main inequality in (10). Additional saturation elements can help refine the range

of the over-saturations that each AW gain will handle, and place emphases on a specific range

of operation by following the development in (14)-(16), in which (16) is replaced by inequality

(or inequalities) that correspond to the range (or ranges) of interest.

B. Feasibility

Next, we consider the conditions under which the proposed scheme is guaranteed to have

solutions. First, note that with Q̄ = Q and γ = γ̃ the inequality (16) is simply (1:4,1:4) bock

of (10). As a result, if (10) is feasible, then there is at least one set of decision variables that

make (14)-(16) feasible. The arrangement in (14)-(16) is simply to allow a more aggressive Λ,

in exchange for a higher guaranteed L2 gain (see examples below). To consider the feasibility
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of (10), similar to the traditional AW, we use the elimination lemma. It is relatively easy to see

that (10) can be written as Ψ+GT [X̃ X]TH+HT [X̃ X]G < 0, where H = [−BT
η 0 −DT

zη −

DT
uη −DT

uη ] and G =

 0 0 0 0 I

0 0 0 I 0

. Applying the standard elimination lemma, we get

the following equivalent conditions
AQ + QAT Bw QCT

z

BT
w −γ̃I DT

zw

CzQ Dzw −γ̃I

 < 0 (17)


Υ1,1 ? ?

BT
1 −γ̃I ?

C1Q11 D11 −γ̃I

+
sd
2


B2

0

D12

M
(
BT

2 0 DT
12

)
< 0 (18)

where Υ1,1 = ApQ11 + Q11A
T
p . Consider (18) first. If the first term is negative definite, then

there exists small enough M such that (18) holds. If the open-loop system is stable, then a

Q11 > 0 (top right hand block of Q) exists so that the first terms holds for some γ̃. Similarly,

stability of closed-loop means that there exists some Q > 0 such that (17) holds. For both (17)

and (18) to hold together, Q11 must be the (1,1) block of Q. These are precisely the sufficient

and necessary conditions for the existence of a single static AW gain (see [6] for more details).

That is, if the traditional AW problem has a solution, the scheduled scheme proposed here (in

(10) and indeed for (14)-(16)) is also feasible. As with the traditional case, the choice of M̃

does not play a role, while M is to be small enough to make (18) feasible.

Of course, it is well known that this ‘common Q11 block’ requirement is not possible in many

problems. Dynamic AW gains address this difficulty in the traditional AW approach. Next, we

show that by using dynamic AW for the first (artificial saturation) loop, we can address this

issue for the scheduling scheme proposed here.

IV. COMBINATION OF DYNAMIC AND STATIC AW

Our focus in this work is to keep the multiple gain AW scheme as simple as possible both in

design and implementation stages. As mentioned above, the motivation to move from static gains

to more complex dynamic forms is the infeasibility problem associated with ‘all static’ gains

for some systems. In the following, we show that by letting only one of the loops to include
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dynamic AW (the outer loop), one can also extend the scheduling approach so that open-loop

stability alone leads to feasibility of the scheduled AW. Of course, one can replace both static

gains with dynamic ones, but this will add to the complexity of the design and implementation,

without additional benefits.

A. Synthesis

Consider the case where the first, artificial, AW loop has dynamic gains while the second one

has only static gains, i.e., we use the following structure for Σaw and Σ̃aw in Fig. 2

Σaw ∼ − Λq , Σ̃aw ∼


ẋa = Aaxa +Baq̃ η̃1

η̃2

 = Caxaw +Daq̃
(19)

where xa ∈ Rna . In the following, we will use the notation Λ̃ = −

 Ba

Da

 . Defining x =

[xTp xTc ]T and x̃ = [xT xTa ]T with w, q and q̃ as inputs, we can represent the augmented

closed-loop system, Σ, as follows:
˙̃x = Ãx̃+ B̃ww + (B̃q − B̃ηΛ)q + (B̃q − B̃η̃Λ̃)q̃

z = C̃zx̃+Dzww + (Dzq −DzηΛ)q + (Dzq −Dzη̃Λ̃)q̃

u = C̃ux̃+Duww + (Duq −DuηΛ)q + (Duq −Duη̃Λ̃)q̃

. (20)

Matrices Ã, C̃u and C̃z contain the dynamic AW matrices Aa and/or Ca. By relying on

V = x̃TQ−1x̃ with Q > 0, and following the same steps in pervious section, the L2 gain from

w to z (i.e., γ̃) can be obtained from matrix inequality (10) when the system matrices A, Bw,

etc are replaced with their tilde counterparts in (20) – i.e., Ã, etc. Once again, the sub-block

(4:5,4:5) ensures the well-posedness of the closed-loop system under the scheduled AW scheme

of Fig. 2 (see [20]). By minimizing γ̃ with respect to (10), we get the stabilizing Σaw and Σ̃aw

with guaranteed performance level of γ̃.

Since the matrices Ã, C̃z, and C̃u contain the AW matrices Aa and/or Ca, the inequality (10)

in its current representation does not form a convex problem. However, following an argument

similar to those in [6], we can show that one can convexify the synthesis matrix inequalities

above for any dynamic AW of order na ≥ np (see Subsection IV-B). Ref. [6] also shows that

any performance level obtained by higher orders can be obtained by na = np. However, in [6],
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the solution of na = np is not explicit and involves a four-step procedure. In order to develop an

approach that can be used in other extensions (such as scheduling, or multi-objective problems),

we use the change of variable approach in [21]. While this yields a relatively simple approach,

it leads to a dynamic AW with na = np + nc. For the change of the variable approach, without

any loss of generality, we use the following Lyapunov matrix:

Q =

 Y S

S S

 , Q−1 =

 Z −Z

−Z Z + S−1

 (21)

with Y = Y T , S = ST , Z = ZT ∈ R(np+nc)×(np+nc). We define the new variables F1 = AaS,

F2 = CaS, F3 = BaM̃ , F4 = DaM̃ and X = ΛM . Then, we can obtain the stabilizing Σaw and

Σ̃aw with guaranteed performance level of γ̃ from the theorem below.

Theorem 1. The closed-loop system in (20) is stable and the L2 gain from w to z is less than

γ̃, if there exist positive scalars M , M̃ , symmetric matrices Y > 0 and S > 0, and matrices F1,

F2, F3 and F4 satisfying

Ω1,1 ? ? ? ? ?

Ω2,1 F1 + FT
1 ? ? ? ?

BT
w 0 −γ̃I ? ? ?

Ω4,1 CzS +DzηF2 Dzw −γ̃I ? ?

Ω5,1 CuS +DuηF2 Duw Ω54 Ω55 ?

Ω6,1 FT
3 + CuS +DuηF2 Duw Ω64 Ω65 Ω66


< 0 (22)

where
Ω11 = AY + YAT +BηF2 + FT

2B
T
η , Ω41 = CzY +DzηF2

Ω21 = SAT + FT
2B

T
η + F1,

Ω51 = MBT
q −XTBT

η + CuY +DuηF2,

Ω54 = MDT
zq −XTDT

zη, Ω64 = M̃DT
zq − X̃TDT

zη̃,

Ω55 = −2s−1
d M +DuqM + MDT

uq −DuηX−XTDT
uη,

Ω61 = M̃BT
q + FT

4B
T
η + CuY +DuηF2,

Ω65 = −M̃ +DuqM + M̃DT
uq −DuηX + FT

4D
T
uη,

Ω66 = −2M̃ +DuqM̃ + M̃DT
uq +DuηF4 + FT

4D
T
uη.

The system matrices A, Bη, etc. are defined in Appendix I. Once this optimization problem

is solved, the AW gains are Aa = F1S
−1, Ba = F3M̃

−1, Ca = F2S
−1, Da = F4M̃

−1, and
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Λ = XM−1.

To put more emphasis on the performance level in the moderate levels of saturation (i.e.,

|u| ≤ 1
gd
ulim), we use an approach similar to the ‘all static’ case. As before, we start by assuming

somehow it can be guaranteed that the command to the actuator ud satisfies |ud(t)| ≤ 1
gd
ulim.

In that case, we could design a more aggressive AW gain Λ. For this, we consider the case that

the first saturation element is not saturated; i.e., when Σ̃ exists but q̃ = 0. In this case, we can

assume Ba and Da are zero, but Aa and Ca have to be accounted for (think initial conditions

and transients). As a result, A and Cz matrices will contain the dynamic AW matrices Aa and

Ca.

Parallel to earlier development, by selecting x̃ = [xT xTa ]T and considering w and q as inputs,

we can represent the closed-loop system in moderate levels of saturation by (20) while q̃ is set to

zero. Note that in this case we can now set Da and Ba to zero to simplify the resulting inequalities

(while keeping the same feasibility conditions, see below). To establish a performance bound

for the AW and ensure stability, we again rely on quadratic Lyapunov function V = x̃TQ−1x̃.

As before, if the magnitude bound is in effect, we have (q, ud) ∈ [0, sd], and qTW (q− sdu) < 0

where W > 0 is a scale. Then invoking S-procedure for some W > 0, it is easy to see that (12)

is the sufficient condition for inequality (8). By expanding (12) in terms of system matrices and

after proper congruent transformations, we obtain:



Ω1,1 ? ? ? ?

Ω2,1 F1 + FT
1 ? ? ?

BT
w 0 −γI ? ?

Ω4,1 CzS +DzηF2 Dzw −γI ?

Ω5,1 CuS +DuηF2 Duw Ω5,4 Ω55


< 0 (23)

Similar to case of static gains, inequality (23) alone does not guarantee the stability and

performance since it is based on the assumption on the magnitude of the command. One way to

ensure overall stability and performance is to combine (23) and (22). In both approaches, since

the same set of AW gains are implemented, certain variables have to be common, i.e. the two

inequalities (22) and (23) must have the same M, X, S, F1 and F2, but in (23), we can use a
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different Y (Ȳ):

Minimize c̃ γ̃ + c γ with (c̃ > 0, c > 0) subject to (24)

LMI (22) and (25)



Ω̄1,1 ? ? ? ?

Ω21 F1 + FT
1 ? ? ?

BT
w 0 −γI ? ?

Ω̄4,1 CzS +DzηF2 Dzw −γI ?

Ω̄5,1 CuS +DuηF2 Duw Ω54 Ω55


< 0 (26)

where Ω̄’s are the counterpart Ω’s when Y is replaced with Ȳ .

Inequality (25), as before, ensures that the closed loop in Fig. (2) is stable with an L2 gain of

γ̃, while (26) indicates that the L2 gain would have been γ if the command magnitude remains

below 1
gd
ulim. As with the case of all static gains one can use c̃ and c to obtain a more aggressive

γ. Recall that the only performance guarantee is γ̃, while γ is best described as a measure of

the aggressiveness and effectiveness of Λ (the lower it is, the more effective Λ should be in

moderate levels of saturation).

B. Feasibility Condition for Dynamic-Static Scheduled Scheme

First, note that as in the case of static compensation, with common variables, (26) is the

(1:5,1:5) block of (22), so the search in (24-26) will always have at least one solution if (22)

holds. We thus need only to focus on (22). Consider inequality (10) when the outer loop is

dynamic AW, i.e, when the system matrices A, Bw, etc are replaced with their tilde counterparts

shown in (20). In the resulting matrix inequality, let us substitute for the Lyapunov matrix Q

the following partitioned form:

Q =

 R V

V T Z

 , Q−1 = P =

 S−1 P12

P T
12 P22


where R, S ∈ R(np+nc)×(np+nc), Z, P22 ∈ Rna×na , V, P12 ∈ R(np+nc)×na . It is relatively easy to

see that such an inequality can be expressed as Ψ +He{GT

 Aa F3 �

Ca F4 −X

T H} < 0, where
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� could be any arbitrary matrix of appropriate dimension where

H =

 0 Ina 0 0 0 0

BT
η 0 0 DT

uηD
T
12 DT

uη DT
uη

 , and

G =


V T Z 0 0 0 0

0 0 0 0 Inu 0

0 0 0 0 0 Inu

 =


0 Ina 0 0 0 0

0 0 0 0 Inu 0

0 0 0 0 0 Inu

Diag [ Q, I, I, I, I
]
.

Applying the elimination lemma, we get the following equivalent conditions for na ≥ np
Γ1,1 ? ?

BT
1 −γI ?

C1R11 D11 −γI

+
sd
2


B2

0

D12

M
(
BT

2 0 DT
12

)
< 0 (27)


AS + SAT Bw SCT

z

BT
w −γI DT

uw

CzS Duw −γI

 < 0 (28)

S=ST =

 S11 S12

ST12 S22

 > 0, R11 = RT
11 > 0, R11 − S11 > 0 (29)

where Γ1,1 = ApR11 + R11A
T
p .

Details, including the non-convex conditions for na < np, follow [6] closely and are not

repeated. The key is that the feasibility conditions become stability of the open loop and nominal

closed loop, the same as the ones associated with a single dynamic AW gains (as in Fig. 1). The

only difference is the second term in (27) which can be made arbitrarily small with M . Adding

the second saturation element thus does not weaken the existence conditions, while allowing for

a more aggressive AW action.
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V. NUMERICAL EXAMPLES

A. Static only gains

Consider the following system taken from [1] with input bound ulim = 1

 Ap B2 B1

C2 D22 D21

=


−10.6 −6.09 −0.9 1 0

1 0 0 0 0

0 1 0 0 0

−1 −11 −30 0 0

 ,
with z = y − w (w is the reference signal in this example). and nominal controller Ac Bcy Bcr

Cc Dcy Dcr

 =


−80 0 1 −1

1 0 0 0

20.25 1600 80 −80

 .
Nominal γ in this problem is 1. Using the results of [5] or [17], the static AW gain from

the traditional approach is Λ = [−0.1968 0.0025 − 0.9860]Twhich leads to a performance

level of γ = 85.78. For this system we choose sd = 0.2. Using the proposed technique

with c̃ = 1 and c = 200, AW gains are Λ = 103[−1.5120 0.0189 0.0795]T and Λ̃ =

[−97.3641 1.2207 0.9435]T . This design leads to γ̃ = 1062.5 and γ = 5.931. Figure 3 shows

the results of a simulation with a small ((a)) and a large ((b)) reference signal for this design. As

these figures illustrate, the scheduled system shows better response than the system with single

AW gain (traditional AW), especially for small signal case (the actuator is saturated in both

cases). Figure 3 also shows the results of a simulation with the same small ((c)) and large ((d))

reference signals for a design with c̃ = c = 1. In this case, we obtain γ̃ = 98.9 and γ = 67.92

and gains that are in the same order or magnitude as the case with c = 200.

Figure 4 shows the time histories of u, ud and û for the first two cases discussed above (i.e.,

when c̃ = 1, and c = 200). As this set of figures shows for small reference signal, the outer-loop

never gets active. Therefore, the system is applying a higher performance AW compensation

compared to the traditional AW, yielding a better response. For larger signal both gains are

active. Similar behavior is observed with AW gains corresponding to c̃ = c = 1.

In both figures, the ideal (without saturation limitations) tracks the input almost perfectly,

which is not surprising, and the plot of the output for this idealized case would be very hard

to distinguish from the reference input. These figures show that by putting more weight on the
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Fig. 3. Output for small (a) and for large (b) reference signal with c = 200 and c̃ = 1; output for a small (c) and a large

(d) reference signal with c = c̃ = 1. Solid line is the response of scheduled AW, dashed-dotted line is for traditional AW, and

dashed line is for the ideal system.
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Fig. 4. Control Command for a small (a) and for a large(b) reference signal with c = 200 and c̃ = 1. Solid line is time history

of û, dashed line is the time history of ud, and dash-dotted line is the time history of u.

performance of Λ, one can obtain better response for moderate levels of saturation, but at a

possible cost of worse overall L2 gain guarantees. As expected, for high saturation levels, the

improvement diminishes.
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Fig. 5. The L2 gains γ̃ (solid line) and γ (dashed line) verses sd for c̃ = c = 1
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Fig. 6. The L2 gains γ̃ (solid line) and γ (dashed line) verses c with c̃ = 1 and sd = 0.2

Figure 5 shows the values of γ̃ and γ verses the sector choice sd. As sd gets closer to 1, the

guaranteed γ becomes larger, since this corresponds to very small values of gd which essentially

removes the first (artificial) saturation element. As a result, γ̃ and γ merge and get closer to the

value of γ for a single gain. Similarly, small values of sd corresponds to gd ≈ 1 which means that

the first (artificial) saturation box limits ud to the actual saturation limits. This removes Λ and

reduces the problem to the case of a single AW loop, thus recovering the results of traditional

AW design.

Figure 6 shows the values of γ̃ and γ verses the weight c for constant c̃ = 1 and sd = 0.2.

Again, as one can expect, putting more weight on the design of moderate levels of saturation

results in better performance in this region, though this will result in somewhat larger over-all

L2 gain γ.
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Fig. 7. System Response: nominal ideal system (dashed-dotted), single gain dynamic AW (dashed), scheduled AW (solid)

B. Static-Dynamic AW combination

The following numerical example is taken from [6]. Plant is defined as

[
Ap B1

]
=


0 1 0 0 0

−330.46 −12.15 −2.44 0 0

0 0 0 1 0

−812.61 −29.87 −30.10 0 15.61


B2 =

[
0 2.71762 0 6.68268

]T
with z = x3, y1 = x1 and y2 = x3. We use the same nominal controller as in [6].

The saturation bound is ulim = 5. For this example, static AW compensation is not feasible.

However, in [6] a plant order dynamic AW is obtained which guarantees a performance level of

γ = 181.82 (the numerical values of the AW matrices are given in [6]). The results of simulation

for a step input of duration 0.1 and magnitude 0.5 are depicted in Fig. 7. As this figure shows, the

single gain dynamic AW still has some undesirable oscillations. A scheduled combined dynamic

and static AW compensator is also designed for this plant with sd = 0.2, c̃ = 1 and c = 20.

This design results in the overall performance of γ̃ = 386.8075 and inner-loop (moderate levels

of saturation) performance of γ = 27.2525. As Fig. 7 suggests, the scheduled scheme improves

the disturbance attenuation behavior of the saturated system by forcing the system to leave the

saturation zone earlier than the traditional AW.
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VI. CONCLUSION

We introduced a modified AW scheme with multiple AW gains, along with the convex LMIs

to design the gains. The goal is to separate the saturated zone into two parts: moderate levels

and higher levels of saturation (extension to multiple regions is possible and is discussed). Then,

using the resulting sector conditions, one can design and implement more aggressive anti-windup

gains in lower levels of saturation, while global stability and performance requirement are handled

by the an outer-loop AW gains, which become active when the system is in higher levels of

saturation. We show that similar to the traditional AW, ‘all static’ AW gains can be infeasible,

even if the open-loop plant is open-loop stable. However, by making the outer-loop a dynamic

gain, we can end up with an AW structure that open-loop stability is the only feasibility condition.

Through two well-known numerical examples, we show that the proposed multiple-stage AW

improves the response of the closed-loop system compared to the traditional AW.

APPENDIX I

System matrices in (7) and (20) are:
Ã B̃w B̃q

C̃z D̃zw Dzq

C̃u D̃uw Duq

 =


A BηCa Bw Bq

0 Aa 0 0

Cz DzηCa Dzw Dzq

Cu DuηCa Duw Duq




B̃η B̃η̃

Dzη Dzη̃

Duη Duη̃

 =


Bη Bη[0(nu+nc)×na Inc+nu ]

0
[
Ina 0na×(nc+nu)

]
Dzη D12Duη̃

Duη Duη[0(nu+nc)×na Inc+nu ]


where using Π = (Inu −DcyD22)

−1:


A

Cz

Cu

 =


Ap +B2ΠDcyC2 B2ΠCc

Bcy(C2 +D22ΠDcyC2) Ac +BcyD22ΠCc

C1 +D12ΠDcyC2 D12ΠCc

ΠDcyC2 ΠCc


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
Bw

Dzw

Duw

 =


B1 +B2Duw

Bcw +Bcy(D22Duw +D21)

D11 +D12Duw

ΠDcyD21 + ΠDcw



Bq Bη

Dzq Dzη

Duq Duη

=


−B2 +B2Duq B2Duη

BcyD22Duq BcyD22Duη + [Inc 0nc×nu ]

D12Duq −D12 D12Duη

−ΠDcyD22 Π[0nu×nc Inu ]


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