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SUMMARY

This paper introduces a novel continuous-time dynamic average consensus algorithm for networks whose

interaction is described by a strongly connected and weight-balanced directed graph. The proposed

distributed algorithm allows agents to track the average oftheir dynamic inputs with some steady-state error

whose size can be controlled using a design parameter. This steady-state error vanishes for special classes

of input signals. We analyze the asymptotic correctness of the algorithm under time-varying interaction

topologies and characterize the requirements on the stepsize for discrete-time implementations. We show

that our algorithm naturally preserves the privacy of the local input of each agent. Building on this analysis,

we synthesize an extension of the algorithm that allows individual agents to control their own rate of

convergence towards agreement and handle saturation bounds on the driving command. Finally, we show

that the proposed extension additionally preserves the privacy of the transient response of the agreement

states and the final agreement value from internal and external adversaries. Numerical examples illustrate

the results. Copyrightc© 201X John Wiley & Sons, Ltd.
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2 S. S. KIA, ET AL.

1. INTRODUCTION

This paper studies the dynamic average consensus problem for a network of autonomous agents.

Given a set of time-varying signals, one per agent, this problem consists of designing a distributed

algorithm that allow agents to track the time-varying average of the signals using only information

from neighbors. Solutions to this problem are of interest in scenarios thatrequire the fusion of

dynamic and evolving information collected by multiple agents. Examples include multi-robot

coordination [1], distributed spatial estimation [2, 3], sensor fusion [4, 5], feature-based map

merging [6], and distributed tracking [7]. We are particularly interested in algorithmic solutions

that allow agents to adjust the rate of convergence towards agreement, are able to handle constraints

on actuation, and preserve the privacy of the information available to them against adversaries.

Literature review.Consensus problems have been intensively studied over the last years.The main

body of work focuses on the static case, where agents aim to reach consensus on a function

depending on initial static values, see e.g. [8, 9, 10, 11, 12] and references therein. In contrast,

the literature on dynamic consensus is not as rich. The initial work [13] proposes a dynamic average

consensus algorithm that is able to track, with zero steady-state error, theaverage of dynamic inputs

whose Laplace transfer function has all its poles in the left half-plane, and at most one pole at the

origin, but is not robust to initialization errors. In [4], the authors generalize the static consensus

algorithm of [14] to track the average of inputs with bounded derivatives which differ bya zero-

mean Gaussian noise. The algorithm acts as a low-pass filter that allows agents to track the average

of dynamic inputs with a non-zero steady-state error, which vanishes in theabsence of noise.

Using input-to-state stability analysis, [15] proposes a proportional-integral algorithm to solve the

dynamic consensus problem which, from any initial condition, convergeswith non-zero steady state
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DYNAMIC AVERAGE CONSENSUS 3

error if the signals are slowly time-varying, and exactly if the signals are static. This algorithm

is generalized in [16] to achieve zero-error dynamic average consensus of a special class of time-

varying input signals whose Laplace transform is a rational function with no poles in the left-hand

complex plane. The proposed algorithm employs frequency-domain tools and exploits the properties

of the inputs’ Laplace transforms. All the algorithms mentioned above are designed in continuous

time and work for networks with a fixed, connected, and undirected graphtopology. The results

of [15] can be applied to networks with a strongly connected and weight-balanceddigraph topology

provided each agent can communicate with its out-neighbors and knows the weights of its incoming

edges. Such requirement may be hard to satisfy in scenarios where the topology is changing. The

work [17] develops an alternative class of discrete-time algorithms for dynamic average consensus

whose convergence analysis relies on input-to-output stability propertiesin the presence of external

disturbances. With a proper initialization of the internal states, the proposedschemes can track,

with bounded steady-state error, the average of the time-varying inputs whosenth-order difference

is bounded. If thenth-order difference is asymptotically zero, the estimates of the average converge

to the true average asymptotically with one timestep delay. These algorithms are not robust to

initialization errors. A common limitation of the works cited above is the lack of consideration

of restrictions on the rate of convergence of individual agents, bounded control authority, or privacy

issues. Regarding the latter, the above algorithms require agents to share their agreement state with

their neighbors, and, in some cases, even their local inputs. Therefore, if adversaries are able to

listen to the exchanged messages, they could infer local inputs, sensitive transient responses and

final agreement states of the network.

Statement of contributions.We begin by providing a formal statement of the dynamic average

consensus problem for a multi-agent system, paying special attention to the rate of convergence,

limits on control actuation, and the preservation of privacy. Our starting point is the introduction of a

continuous-time algorithm that allows the group of agents communicating over a strongly connected

and weight-balanced digraph to track the average of their reference inputs with some steady-state

error. We carefully characterize the asymptotic convergence properties of the proposed strategy,
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4 S. S. KIA, ET AL.

including its rate of convergence, its robustness against initialization errors, and its amenability

to discrete-time implementations. We also discuss how the algorithm performance (specifically,

the steady-state error and the transient response) can be tuned via two design parameters. For

special classes of inputs, which include static inputs and dynamic inputs whichdiffer by a constant

value, we show that the steady-state error vanishes. We also establish thealgorithm correctness

under time-varying network topologies that remain weight-balanced and areinfinitely often jointly

strongly connected. Our next step is the introduction of an extension of theproposed dynamic

average consensus algorithm to include a local first-order filter at eachagent. We show how this

extension allows individual agents to tune their rate of convergence towards agreement without

affecting the rest of the network or changing the ultimate tracking error bound. We also establish

that, under limited control authority, this extension has the same correctness guarantees as the

original algorithm as long as the input signals are bounded with a bounded relative growth. Several

simulations illustrate our results. Our final step is the characterization of the privacy-preservation

properties of the proposed dynamic average consensus algorithms. We consider adversaries who aim

to retrieve information about the inputs, their average, or the state trajectories. These adversaries

might be inside (internal) or outside (external) the network, do not interfere with the algorithm

execution, and may have access to different levels of information, such as knowledge of certain

parts of the graph topology, the algorithm design parameters, initial conditions, or the history of

communication messages. We show how the proposed algorithms naturally preserve the privacy

of the input of each agent against any adversary. Moreover, we establish that the extension that

incorporates local first-order filters protects the privacy of the agreement state trajectories against

any adversary by adding a common signal to the messages transmitted among neighbors. This

strategy also preserves the privacy of the final agreement value against external adversaries.

Organization.Section2 introduces basic notation, graph-theoretic concepts, and the model of

time-varying networks. Section3 formally introduces the dynamic consensus problems of interest.

Section 4 presents our dynamic average consensus algorithm, establishes its correctness, and

analyzes its properties regarding changing interaction topologies, discrete-time implementations,
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DYNAMIC AVERAGE CONSENSUS 5

and rate of convergence. Section5 introduces a modified version which enables agents to opt for

a slower rate of convergence and solves the consensus problem in the presence of bounded control

commands. Section6 considers the privacy preservation properties of the proposed algorithms.

Section7 presents simulations illustrating our results. Finally, Section8 gathers our conclusions

and ideas for future work.

2. PRELIMINARIES

In this section, we introduce basic notation, concepts from graph theory used throughout the paper,

and our model for networks with time-varying interaction topologies.

2.1. Notational conventions

The vector1n is the vector ofn ones,0n is the vector ofn zeros, andIn is the identity matrix

with dimensionn× n. We denote byA⊤ the transpose of matrixA. For a square matrixA we

defineSym(A) = 1
2 (A+A⊤). We useDiag(A1, · · · ,AN ) to represent the block-diagonal matrix

constructed from matricesA1, . . . ,AN . We defineΠn = In − 1
n
1n1

⊤
n . We denote the induced two-

norm of a real matrixA by ‖A‖, i.e., ‖A‖ = σmax(A), whereσmax is the maximum singular

value ofA. The spectral radius of a square matrixA is represented byρ(A). For a vectoru,

we use‖u‖ to denote the standard Euclidean norm, i.e.,‖u‖ =
√
u⊤u. For vectorsu1, · · · ,uN ,

we let (u1, · · · ,uN ) represent their aggregated vector. For a complex variablec, ℜ(c) indicates

its real part. For a scalar variableu, the saturation function with limit0 < ū <∞ is indicated by

satū(u), i.e.,satū(u) = sign(u)min{|u|, ū}. We letδ1(ǫ) ∈ O(δ2(ǫ)) denote the fact that there exist

positive constantsc andk such that|δ1(ǫ)| ≤ k|δ2(ǫ)|, ∀ |ǫ| < c. For network-related variables, the

local variables of each agent are distinguished by a superscript, e.g.,ui(t) is the local dynamic

input of agenti. If pi ∈ R is a local variable at agenti, the aggregatedpi’s are represented by

p = (p1, . . . , pN ) ∈ R
N . Our analysis involves linear systems of the form

ẋ(t) = Ax(t) +Bu(t), (1)
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6 S. S. KIA, ET AL.

where statesx(t) take values in the Euclidean spaceRn, and inputs are measurable locally

essentially bounded mapsu : [0,∞) → R
m. Thezero-systemassociated to (1) is by definition the

system with no inputs, i.e.,̇x = Ax. We denote by‖u‖ess, the (essential) supremum norm , i.e.,

‖u‖ess= sup{‖u(t)‖, t ≥ 0} <∞. Theconvergence rateof a stable linear systeṁx = Ax is

r = inf{χ > 0 | ∃κ > 0 such that‖x(t)‖ ≤ κ‖x(0)‖ e−χt, t ≥ 0}. (2)

Here,x(t) is the solution of the system when it starts from any initial statex(0) ∈ R
n. This

definition implies that for linear time-invariant dynamical system, the rate of convergence is the

least negative real part of the eigenvalues.

2.2. Graph theory

Here, we briefly review some basic concepts from graph theory and linear algebra, see e.g. [12].

A directed graph, or simply adigraph, is a pairG = (V, E), whereV = {1, . . . , N} is the node

set and E ⊆ V × V is the edge set. An edge fromi to j, denoted by(i, j), means that agent

j can send information to agenti. For an edge(i, j) ∈ E , i is called anin-neighbor of j and

j is called anout-neighborof i. A digraph G′ = (V, E ′) is a spanning subgraphof a digraph

G = (V, E) if E ′ ⊂ E . A graph isundirectedif (i, j) ∈ E anytime(j, i) ∈ E . Given digraphsGi =

(V, Ei), i ∈ {1, . . . ,m}, defined on same node set, thejoint digraphof these digraphs is the union

∪n
i=1Gi = (V, E1 ∪ E2 ∪ · · · ∪ Em). A directed pathis an ordered sequence of vertices such that any

ordered pair of vertices appearing consecutively is an edge of the digraph. A directed treeis an

acyclic digraph with the following property: there exists a node, called the root, such that any other

node of the digraph can be reached by one and only one directed path starting at the root. Adirected

spanning treeof a digraph is a spanning subgraph that is a directed tree. A digraph is called strongly

connectedif for every pair of vertices there is a directed path between them. It isstrongly semi-

connectedif the existence of a directed path from any nodei in the digraph to any other nodej

implies the existence of a directed path from the nodej to nodei, as well.

A weighted digraphis a triplet G = (V, E ,A), where(V, E) is a digraph andA ∈ R
N×N is a

weightedadjacencymatrix with the property thataij > 0 if (i, j) ∈ E and aij = 0, otherwise.
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DYNAMIC AVERAGE CONSENSUS 7

We useΓ(A) to denote a digraph induced by a given adjacency matrixA. A weighted digraph

is undirectedif aij = aji for all i, j ∈ V. The weighted out-degreeand weighted in-degreeof a

nodei, are respectively, din(i) =
∑N

j=1 aji and dout(i) =
∑N

j=1 aij . We let dout
max = max

i∈{1,...,N}
dout(i)

denote the maximum weighted out-degree. A digraph isweight-balancedif at each nodei ∈ V,

the weighted out-degree and weighted in-degree coincide (although they might be different across

different nodes). A necessary and sufficient condition for a digraph to be weight-balanced is for it

to be strongly semi-connected.

The out-degree matrixDout is the diagonal matrix with entriesDout
ii = dout(i), for all i ∈ V. The

(out-) Laplacianmatrix isL = Dout −A. Note thatL1N = 0. A weighted digraphG is weight-

balanced if and only if1T
NL = 0. Based on the structure ofL, at least one of the eigenvalues of

L is zero and the rest of them have nonnegative real parts. We denote theeigenvalues ofL by λi,

i ∈ {1, . . . , N}, whereλ1 = 0 andℜ(λi) ≤ ℜ(λj), for i < j. For a strongly connected digraph, zero

is a simple eigenvalue ofL. We denote the eigenvalues ofSym(L) by λ̂i, i ∈ {1, . . . , N}. For a

strongly connected and weight-balanced digraph, zero is a simple eigenvalue ofSym(L). For such

a digraph, we order the eigenvalues ofSym(L) asλ̂1 = 0 < λ̂2 ≤ λ̂3 ≤ · · · ≤ λ̂N .

2.3. Time-varying interactions via switched systems

Here we introduce our model of networks with fixed number of agents but time-varying interaction

topologies. Let(V, E(t),A(t)) be a time-varying digraph, where the nonzero entries of the

adjacency matrix are uniformly lower and upper bounded (i.e.,aij(t) ∈ [a, ā], where0 < a ≤ ā, if

(j, i) ∈ E(t), andaij = 0 otherwise). Our model of time-varying networks is thenG(t) = Γ(Aσ(t)),

t ≥ 0, with σ : [0,∞) → P = {1, . . . ,m} a piecewise constant signal belonging to some switching

setS. Here,m can be infinity. In our developments later, we provide precise specifications for S.

By piecewise constant, we mean a signal that only has a finite number of discontinuities in any

finite time interval and that is constant between consecutive discontinuities (no chattering). Without

loss of generality, we assume that switching signals are continuous from theright. The uniform

stability of switched linear systems with time-dependent switching signals (whereuniformity refers
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8 S. S. KIA, ET AL.

to the multiple solutions that can be obtained as the switching signal ranges overa switching set) is

characterized by the following result.

Lemma 2.1(Asymptotic stability of switched linear systems implies exponential stability [18])

For linear switched systems with trajectory-independent switching, uniformasymptotic stability is

equivalent to exponential stability.

We end this section by introducing the following notations. Given a time-varyingdigraph, we denote

by ∪t2
t1
G(t) the joint digraph in the time interval[t1, t2) where t1 < t2 < +∞. We say a time-

varying graphG(t) is jointly strongly connectedover the time-interval[t1, t2) if ∪t2
t1
G(t) is strongly

connected. The time instants at which the switching signalσ is discontinuous are calledswitching

timesand are denoted byt0, t1, t2, · · · , wheret0 = 0. We useLσ to represent the out-Laplacian of

the digraphΓ(Aσ).

3. PROBLEM STATEMENT

We consider a network ofN agents with single-integrator dynamics given by

ẋi = ci, i ∈ {1, . . . , N}, (3)

wherexi ∈ R is theagreement stateandci ∈ R is thedriving commandof agenti. The network

interaction topology is modeled by a weighted digraphG. Agenti ∈ {1, . . . , N} has access to a time-

varying input signalui : [0,∞) → R. The problem we are interested in solving is the following.

Problem 1(Dynamic average consensus)

Let G be strongly connected and weight-balanced. Design a distributed algorithmsuch that each

agent’s statexi(t) asymptotically tracks the average1
N

∑N

j=1 u
j(t) of the inputs. ✷

The algorithm design amounts to specifying a suitable driving commandci for each agenti ∈

{1, . . . , N}. By distributed, we mean that agenti only interacts with its out-neighbors. In addition,

we also consider variations of the problem above that are intended to satisfy some practical issues

that arise in using the consensus algorithm in applications where the agent state corresponds to a

physical quantity such as position or velocity.

Copyright c© 201X John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control(201X)
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DYNAMIC AVERAGE CONSENSUS 9

Problem 2(Dynamic average consensus with controllable rate of convergence)

Solve Problem1 such that each agent converges at its own desired rate of convergence. ✷

By giving a freedom to choose their desired rate of convergence, we allow agents with limited

control authority to opt for a slow rate of convergence. We can also usethe control over

individual rate of convergence of agents in scheduling different time ofarrivals for them. This can

benefit applications such as payload delivery or arial surveillance. Although reducing the rate of

convergence helps with cases that the control authority is limited but there is no guarantees that we

can avoid saturation. The next problem seeks a solution that provides such guarantees.

Problem 3(Dynamic average consensus with limited control authority)

Solve Problem1 under bounded driving commands, i.e.,ẋi = − satc̄i(c
i) for all i ∈ {1, . . . , N}. ✷

Finally, we consider the problem of dynamic average consensus with privacy preservation in

the presence of adversaries. We consider adversaries that do not interfere with the algorithm

implementation but seek to steal information about the inputs, their average, orthe agreement state

trajectories of the individual agents.

Problem 4(Dynamic average consensus with privacy preservation)

Solve Problems1-3 such that the following privacy requirements are satisfied

(a) the local inputs of the agents should not be revealed or be reconstructible by any adversary;

(b) the agreement value should not be revealed to or be reconstructible by external adversaries;

(c) the agreement state should not be revealed to or be reconstructible byany adversary. ✷

For vector-valued inputs, one can apply the solution of Problems1-4 in each dimension.

4. DYNAMIC AVERAGE CONSENSUS

In this section, we introduce a distributed dynamic average consensus algorithm which solves

Problem1 with a steady-state error for arbitrary time-varying input signals. We also show that the

size of this error can be controlled using a design parameter and that, for special classes of inputs,

the steady-state error is zero.

Copyright c© 201X John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control(201X)
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10 S. S. KIA, ET AL.

4.1. Fixed interaction topology

Here we assume that the interaction topology of the network is fixed. We propose the following

distributed algorithm as our solution for Problem1

ẋi = −α(xi − ui)− β

N∑

j=1

Lijx
j − vi + u̇i, (4a)

v̇i = αβ

N∑

j=1

Lijx
j , (4b)

for i ∈ {1, . . . , N}. Here,xi ∈ R andvi ∈ R are variables associated with agenti. Also, L is the

Laplacian of the digraphG modeling the interaction topology. The constantsα, β ∈ R are design

parameters that can be used to tune the algorithm performance. In the following, we study the

convergence and stability properties of this algorithm by using its equivalent compact form below

ẏ = −αy − βLy −w, (5a)

ẇ = αβLy −ΠN (ü+ αu̇). (5b)

where

yi = xi − 1

N

N∑

j=1

uj , i ∈ {1, . . . , N}, (6a)

w = v − v̄, v̄ = ΠN (u̇+ αu). (6b)

Recall from Section3 thatxi represents the agreement state of agenti. Therefore, with the change

of variables (6a) we are transferring the desired equilibrium of the system, in agreement state, to

zero. We start our study by analyzing the stability and convergence properties of the zero-system

of (5), i.e.,


ẏ

ẇ


 = A



y

w


 , whereA =



−αIN − βL −IN

αβL 0


 . (7)

In the following we show that the dynamical system (7), over a strongly connected and weight-

balanced digraph, is stable and convergent.

Lemma 4.1(Asymptotic convergence of (7))

Let G be strongly connected and weight-balanced. Forα, β > 0, the trajectory of (7) overG starting

Copyright c© 201X John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control(201X)
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DYNAMIC AVERAGE CONSENSUS 11

from any initial conditiony(0),w(0) ∈ R
N satisfies,

yi(t) → −α
−1

N

N∑

j=1

wj(0), wi(t) → 1

N

N∑

j=1

wj(0), ast→ ∞, ∀i ∈ {1, . . . , N}, (8)

exponentially fast with rate of convergence upper bounded bymin{α, βℜ(λ2)}.

Proof

Consider the following change of variables,



p

q


 = T1T2



y

w


 , T1 =




IN 0

αIN IN


 , T2 =



T⊤
3 0

0 T3


 , T3 =

[
r R

]
, (9)

wherer = 1√
N
1N andR is such thatr⊤R = 0 andR⊤R = IN−1. We partition the new variables

asp = (p1,p2:N ) andq = (q1, q2:N ), wherep1, q1 ∈ R andp2:N , q2:N ∈ R
N−1. Using the change

of variables, the dynamics (7) can be represented in the following equivalent form



ṗ1

q̇1


 = Ã



p1

q1


 , Ã =



0 −1

0 −α


 , (10a)



ṗ2:N

q̇2:N


 = A



p2:N

q2:N


 , A =



−βR⊤LR −IN−1

0 −αIN−1


 . (10b)

The eigenvalues of̃A are0 and−α. The eigenvalues of the matrixA are−α, with multiplicity

N − 1, and −βλi, with i ∈ {2, . . . , N}. Recall thatλi’s are eigenvalues ofL. For a strongly

connected digraph,λ1 = 0 and the rest of the eigenvalues have positive real parts. Therefore,for

α, β > 0, the dynamical system (10), and equivalently (7), is a stable linear system.

The null-space of the system matrixA is spanned by(1N ,−α1N ), the eigenvector associated with

zero eigenvalue. Therefore, (7) converges exponentially fast to the set

{(y,w) |y = µ1N , w = −µα1N , µ ∈ R}. (11)

Left multiplying both sides of (7) by Diag(0N
⊤,1N

⊤) and invoking the weight-balanced property

of the digraph, we obtain
∑N

i=1 ẇ
i = 0, and therefore,

N∑

i=1

wi(t) =

N∑

i=1

wi(0), ∀ t ≥ 0. (12)
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12 S. S. KIA, ET AL.

The combination of (11) and (12) yields that, from initial conditiony(0),w(0) ∈ R
N , the trajectory

of the dynamical system (7) satisfies (8), exponentially fast. Based on (2), the rate of convergence

is min{α, βℜ(λ2)}.

The next result further probes into the properties of the dynamical system (7) by upper bounding

the difference between the stateyi of agenti at any timet and the equilibrium value. This bound is

instrumental later in the characterization of the steady-state error of (4).

Lemma 4.2(Upper bound on trajectories of (7))

Under the assumptions of Lemma4.1, the following bound holds for eachi ∈ {1, . . . , N},

∣∣∣∣∣y
i(t) +

α−1

N

N∑

j=1

wj(0)

∣∣∣∣∣ ≤
∥∥∥y(t) + α−1rr⊤w(0)

∥∥∥ ≤ s(t),

where

s(t) = (e−αt +e−βλ̂2t)
∥∥∥y(0)

∥∥∥+ α−1 e−αt
∥∥∥w(0)

∥∥∥

+





(βλ̂2 − α)−1(e−αt − e−βλ̂2t)
(
α
∥∥∥y(0)

∥∥∥+
∥∥∥w(0)

∥∥∥
)
, if α 6= βλ̂2,

t e−βλ̂2t
(
α
∥∥∥y(0)

∥∥∥+
∥∥∥w(0)

∥∥∥
)
, if α = βλ̂2.

(13)

Proof

The solution of the state equation (10) from initial condition y(0),w(0) ∈ R
N is

(p1(t), q1(t),p2:N (t), q2:N (t)) = Ω(t)(p1(0), q1(0),p2:N (0), q2:N (0)), where

Ω(t) =




1 α−1(e−αt −1) 0 0

0 e−αt 0 0

0 0 Φ(t, 0) −
∫ t

0
Φ(t, τ) e−ατ dτ

0 0 0 e−αt IN−1




, (14)

andΦ(t, τ) = e−βR⊤
LR(t−τ). Now, from [19, Fact 11.15.7, item xvii], we deduce

∥∥∥Φ(t, τ)
∥∥∥ =

∥∥∥ e−βR⊤
LR(t−τ)

∥∥∥ ≤ e−βλ̂2(t−τ), (15)

and hence
∥∥∥
∫ t

0

Φ(t, τ) e−ατ dτ
∥∥∥ ≤

∫ t

0

e−βλ̂2(t−τ) e−ατ dτ. (16)
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Now, using the change of variables (9), one has

y(t) = S11y(0) + S12w(0), (17)

where

S11 = e−αt rr⊤ +RΦ(t, 0)R⊤ − αR(

∫ t

0

Φ(t, τ) e−ατ dτ)R⊤, (18a)

S12 = (−α−1 + α−1 e−αt)rr⊤ −R(

∫ t

0

Φ(t, τ) e−ατ dτ)R⊤. (18b)

The result now follows from using (15) and (16) to bound the expression (17).

Next, using the results guaranteed by Lemma4.2we study the convergence and stability properties

of our proposed dynamic average consensus algorithm (4). We start by establishing an upper bound

on its tracking error for any given initial condition.

Theorem 4.1(Upper bound on the tracking error of (4))

Let G be strongly connected and weight-balanced. Each agent has a piecewise continuously

differentiable inputui(t). For α, β > 0, the trajectory of the algorithm (4) over G starting from

any initial conditionx(0),v(0) ∈ R
N satisfies, for alli ∈ {1, . . . , N},

∣∣∣∣∣x
i(t)− 1

N

N∑

j=1

uj(t) +
α−1

N

N∑

j=1

vj(0)

∣∣∣∣∣ ≤s(t) +
∫ t

0

e−βλ̂2(t−τ)
∥∥∥ΠN u̇(τ)

∥∥∥dτ+ (19)





(βλ̂2 − α)−1(e−αt − e−βλ̂2t)
∥∥∥u̇(0)

∥∥∥, if α 6= βλ̂2,

t e−βλ̂2t

∥∥∥u̇(0)
∥∥∥, if α = βλ̂2,

wheres(t) is defined in (13), andy andw are defined in (6).

Proof

Recall that using the change of variables defined in (6) we can represent (4) in the equivalent

compact form (5). Using the change of the variables (9) we can represent (5) in the following
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14 S. S. KIA, ET AL.

equivalent form



ṗ1

q̇1


 = Ã



p1

q1


 , (20a)



ṗ2:N

q̇2:N


 = A



p2:N

q2:N


−




0

R⊤


 (ü+ αu̇), (20b)

where Ã and A are defined in (10). For any given initial conditions, the solution of the state

equation (20) is




p1(t)

q1(t)

p2:N (t)

q2:N (t)




=Ω(t)




p1(0)

q1(0)

p2:N (0)

q2:N (0)




−




0

0

∫ t

0
Φ(t, τ) e−ατ dτ (q2:N (0)+R⊤u̇(0))−

∫ t

0
Φ(t, τ)R⊤u̇(τ)dτ

−R⊤u̇(0) +R⊤u̇(t)




,

whereΩ(t) is defined in (14). Recalling the change of variables (9), we have

y(t) = S11y(0) + S12w(0)−R

∫ t

0

Φ(t, τ) e−ατ dτ R⊤u̇(0) +R

∫ t

0

Φ(t, τ)R⊤u̇(τ)dτ, (21)

whereS11 andS12 are defined in (18). Note that (6b) implies that
∑N

i=1 w
i(0) =

∑N

i=1 v
i(0).

Notice also thatR⊤ = R⊤
ΠN , and

∥∥∥R
∥∥∥ =

∥∥∥R⊤
∥∥∥ = σmax(R) = 1. Then, by recalling (15), it is

straightforward to show that (19) is satisfied.

The next result shows that, for input signals whose orthogonal projection into the agreement space

are essentially bounded, the algorithm (4) solves Problem1 with a bounded steady-state error.

Corollary 4.1(The algorithm (4) solves Problem1)

Let G be strongly connected and weight-balanced. Assume that the derivatives of the inputs of

the network satisfy‖ΠN u̇‖ess= γ <∞. Then, for anyα > 0 andβ > 0 the algorithm (4) overG

initialized atxi(0) ∈ R andvi(0) ∈ R such that
∑N

i=1 v
i(0) = 0 solves Problem1 with an upper-

bounded steady-state error. Specifically,

lim
t→∞

sup

∣∣∣∣∣x
i(t)− 1

N

N∑

j=1

uj(t)

∣∣∣∣∣ ≤ (βλ̂2)
−1γ, i ∈ {1, . . . , N}. (22)
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DYNAMIC AVERAGE CONSENSUS 15

Proof

In Theorem4.1, for a strongly connected and weight-balanced digraph, we showed that the

trajectories of the algorithm (4), for anyxi(0), vi(0) ∈ R, i ∈ {1, . . . , N}, satisfy the bound (19).

Notice that
∫ t

0

e−βλ̂2(t−τ)
∥∥∥ΠN u̇(τ)

∥∥∥dτ ≤ (βλ̂2)
−1(1− e−βλ̂2t)γ.

Then we can easily deduce (22) from (19).

Remark 4.1(Effect of faulty initial conditions)

The condition
∑N

i=1 v
i(0) = 0 of Corollary 4.1 can be easily satisfied if each agent starts at

vi(0) = 0. This is a mild requirement becausevi is an internal state for agenti, and therefore it

is not affected by imperfect communication errors. Additionally, for large networks, if we assume

that the initialization error is zero-mean Gaussian noise, we can expect
∑N

i=1 v
i(0) = 0. ✷

Remark 4.2(Tuning the performance of (4) via design parameters)

Corollary4.1suggests that to reduce the nonzero steady-state error, one can eitherincrease the graph

connectivity (larger̂λ2) or use a larger value ofβ. The parameterα can also be exploited to regulate

the algorithm performance. The bound (19) suggests that the rate of convergence of the transient

behavior is governed bymin{α, βλ̂2}. If one is forced to use largeβλ̂2 to reduce the steady-state

error, thenα can fulfill the role of regulating the rate of convergence of the algorithm. ✷

Remark 4.3(Comparison with input requirements of the solutions in the literature)

In order to guarantee bounded steady-state error tracking of the inputaverage, the solution we

offer for Problem1 through Corollary4.1 only requires that the projection of the network’s

aggregated input derivative vector into the agreement space is bounded. This is more general than

the requirements in the literature, which generally ask for bounded input and/or bounded derivatives

(e.g., [4, 15, 17]). ✷

In the following, we identify conditions involving the inputs and their derivatives under which the

algorithm (4) solves Problem1 with zero steady-state error.
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Lemma 4.3(Conditions on inputs for zero steady-state error of (4))

Let G be strongly connected and weight-balanced. Assume there existsα > 0 such that, for all

i ∈ {1, . . . , N}, one of the following conditions are satisfied

(a) u̇i(t) + αui(t) converges to a common functionl(t) ast→ ∞;

(b) üi(t) + αu̇i(t) converges to a common functionl(t) ast→ ∞.

Then, the algorithm (4) overG with the givenα, xi(0) ∈ R, andvi(0) ∈ R such that
∑N

i=1 v
i(0) = 0,

for anyβ > 0, makesxi(t) → 1
N

∑N

j=1 u
j(t) ast→ ∞, for all i ∈ {1, . . . , N}.

Proof

Using the change of variables (6a) we can represent (4) in the following equivalent compact form

ẏ = −αy − βLy − v +ΠN (u̇+ αu), (23a)

v̇ = αβLy. (23b)

When condition (a) holds we haveΠN (u̇+ αu) → 0, ast→ ∞. Notice that (23), the equivalent

representation of (4), is a linear system with a vanishing inputΠN (u̇+ αu). Therefore, it

converges to the equilibrium of its zero-system. In light of Lemma4.1, we conclude that

yi(t) → −α−1

N

∑N

j=1 v
j(0) asymptotically for alli ∈ {1, . . . , N}. However, due to initialization

requirement we have
∑N

i=1 v
i(0) = 0. As a resultxi(t) → 1

N

∑N

j=1 u
j(t) globally asymptotically

for i ∈ {1, . . . , N}.

When condition (b) holds we haveΠN (ü+ αu̇) → 0, as t→ ∞. Recall (5) the equivalent

representation of (4). It is a linear system with a vanishing inputΠN (u̇+ αu). Then, using

a similar argument used for (23) above, we can show that in (5) yi(t) → −α−1

N

∑N

j=1 w
j(0)

asymptotically for alli ∈ {1, . . . , N}. Using (6b), we can show
∑N

i=1 w
i(0) =

∑N

i=1 v
i(0). As a

resultxi(t) → 1
N

∑N

j=1 u
j(t) globally asymptotically fori ∈ {1, . . . , N}.

Remark 4.4(Inputs that satisfy the conditions of Lemma4.3)

The classes of inputs in Lemma4.3depend on a parameterα which must be known by each agent

in order to obtain zero steady-state error. Classes of inputs that satisfy the conditions regardless of
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DYNAMIC AVERAGE CONSENSUS 17

the value ofα, such as static inputs and dynamic inputs which differ from one another by static

values. For these classes of inputs,ΠN (ü+ αu̇) = 0, and the convergence is exponential with rate

min{α, βℜ(λ2)}. ✷

4.2. Time-varying interaction topologies

In this section, we analyze the stability and convergence properties of the dynamic average

consensus algorithm (4) over networks with changing interaction topology. Changes can be due

to unreliable transmission, limited communication/sensing range, or obstacles. Let (V, E(t),A(t))

be a time-varying digraph, where the nonzero entries of the adjacency matrix are uniformly lower

and upper bounded (i.e.,aij(t) ∈ [a, ā], where0 < a ≤ ā, if (j, i) ∈ E(t), andaij = 0 otherwise).

Intuitively one can expect that consensus in switching networks will occur if there is occasional

enough flow of information from every node in the network to every other node. Then, according

to Section2.3, in order to describe our switching network model, we start by specifying the set of

admissible switching signals.

Definition 1(Admissibleswitching setSadmis)

An admissible switching setSadmis is a set of piecewise constant switching signalsσ : [0,∞) → P

with some dwell timetL (i.e., tk+1 − tk > tL > 0, for all k = 0, 1, . . . ) such that

• the induced digraphΓ(Aσ(t)) is weight-balanced fort ≥ t0;

• the number of contiguous, nonempty, uniformly bounded time-intervals[tij , tij+1
), j =

1, 2, . . . , starting atti1 = t0, with the property that∪tij+1

tij
Γ(Aσ(t)) is a jointly strongly

connected digraph goes to infinity ast→ ∞. ✷

Our model of network with switching topology is thenΓ(Aσ), with σ ∈ Sadmis. The algorithm (4),

after applying the change of variables (6), is represented in compact form as follows



ẏ

ẇ


 = Aσ(t)



y

w


−




0

ΠN (ü+ αu̇)


 , Aσ(t) =



−αIN − βLσ(t) −IN

αβLσ(t) 0.


 . (24)
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18 S. S. KIA, ET AL.

Similarly to our analysis of the algorithm over fixed interaction topologies, we start by examining

the zero-system of (24), i.e., 

ẏ

ẇ


 = Aσ(t)



y

w


 (25)

The following result analyzes the convergence and stability properties ofthe switched dynamical

system (25) when the switching signalσ ∈ Sadmis.

Lemma 4.4(Asymptotic convergence of (25))

Letσ ∈ Sadmis and considerG(t) = Γ(Aσ(t)) for t ≥ 0. Then, for anyα, β > 0, the trajectory of the

algorithm (25) starting from any initial conditiony(0),w(0) ∈ R
N satisfies (8), exponentially fast.

Proof

Using the change of the variables (9), we can represent (25) in the following equivalent form



ṗ1

q̇1


 = Ã



p1

q1


 , Ã =



0 −1

0 −α


 ,



ṗ2:N

q̇2:N


 = Aσ(t)



p2:N

q2:N


 , Aσ(t) =



−βR⊤Lσ(t)R −IN−1

0 −αIN−1


 .

We can writeṗ as follows

ṗ = −T⊤
3 LσT3p− q. (26)

We can look at this dynamical equation as a linear system with inputq which vanishes exponentially

fast (notice thatq̇ = −αq). Next, we examine the stability of zero-system of (26). Under the state

transformationη = T3p, this zero-system can be represented in the following equivalent form

η̇ = −Lση. (27)

According to [9, Theorem 2.33], when the switching signalσ is such that the number of contiguous,

nonempty, uniformly bounded time-intervals[tij , tij+1
), j = 1, 2, . . . , starting atti1 = t0, with the

property that∪tij+1

tij
Γ(Aσ(t)) has a spanning tree, then (27) asymptotically achieves consensus.

Invoking this result, we can conclude that forσ ∈ Sadmis, the trajectories of (27) converge

asymptotically to 1
N

∑N

j=1 ηj(0) whereηi(0) is the ith element ofη(0). For zero-system of (26),
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this is equivalent top1(t) → p1(0) andp2:N (t) → 0 uniformly asymptotically for allσ ∈ Sadmis.

The switching signalσ ∈ Sadmis is a trajectory-independent (it is time-dependent) switching signal.

Then, Lemma2.1 implies that the convergence of the zero system of (26) is indeed globally

uniformly exponentially fast. Using input-to-state stability results (see [20, 21]), then we can

conclude that in (26), p1(t) → p1(0) andp2:N (t) → 0 ast→ ∞ uniformly globally exponentially.

Recall the change of variable (9), then it is easy to show that for (25) we also have (8).

Obtaining an explicit value for the rate of convergence of (25) for all possibleσ ∈ Sadmis is

not straightforward. However, we can show that the rate of convergence is upper bounded by

max
p∈P

(ℜ(λp2)), whereλp2 is the eigenvalue ofLp with smallest nonzero real part. The following

result relates the upper bound on the difference between the stateyi(t) of agenti at any timet and

the final agreement value to the rate of convergence of (8).

Lemma 4.5(Upper bound on trajectories of (25))

Under the assumptions of Lemma4.4, the following bound holds for eachi ∈ {1, · · · , N},
∣∣∣∣∣y

i(t) +
α−1

N

N∑

i=1

wi(0)

∣∣∣∣∣ ≤
∥∥∥yT(t) + α−1rr⊤wT(0)

∥∥∥ ≤ ŝ(t), (28)

whereŝ(t) is the same ass(t) in (13) only λ̂2 is replaced bŷλσ > 0 whereλ̂σ satisfies

∥∥∥ e−βR⊤
Lσ(t)R(t−t0)

∥∥∥ ≤ κ e−βλ̂σ(t−t0), ∀t ≥ t0 ≥ 0, (29)

for some finite0 < κ.

Proof

We follow the same steps of the proof of Lemma4.2. The only difference is that the norm bound (15)

of the transition matrix oḟp2:N state equation has to be modified, as explained below. We showed in

the proof of Lemma4.5that whenσ ∈ Sadmis for all t ≥ t0, the zero-system of (26) is exponentially

stable. Therefore, there exist positiveλ̂σ andκ such that

∥∥∥Φ(t, t0) = e−βR⊤
Lσ(t)R(t−t0)

∥∥∥ ≤ κ e−βλ̂σ(t−t0), ∀t ≥ t0 ≥ 0.

As a result, in the case of switched dynamical systems, in (16) λ̂2 is replaced bŷλσ. Then, from (17)

we can deduce the bound (28).
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In light of Lemma4.5, the extension of the results on the stability analysis and ultimate convergence

error bound of the algorithm (4) over fixed interaction topologies to switching networks whose

switching signalσ ∈ Sadmis is straightforward. For such switching networks, Theorem4.1 and

Corollary 4.1 are valid, with the only change of replacingβλ̂2 by βλ̂σ, cf. (29), in the statement.

Because of Lemma4.4, the proof that Lemma4.3 applies to switched networks withσ ∈ Sadmis is

straightforward. For the sake of brevity the detailed statements and proofsare omitted.

4.3. Discrete-time implementation over fixed interaction topologies

In this section, we offer the following discrete-time algorithm as an iterative dynamic consensus

algorithm that solves Problem1 again with a non-zero steady-state error

zi(k + 1) = zi(k)− δαzi(k)− δβ

N∑

j=1

Lij(z
j(k) + uj(k))− δvi(k), (30a)

vi(k + 1) = vi(k) + δαβ

N∑

j=1

Lij(z
j(k) + uj(k)), (30b)

xi(k) = zi(k) + ui(k), (30c)

for i ∈ {1, . . . , N}. Hereδ > 0 is the stepsize. Using (30c) to obtainzi(k) = xi(k)− ui(k), and

substituting this in (30a) and (30b), we obtain

xi(k + 1) = xi(k)− δα(xi(k)− ui(k))− δβ

N∑

j=1

Lijx
j(k)− δvi(k) + ∆ui(k), (31a)

vi(k + 1) = vi(k) + δαβ

N∑

j=1

Lijx
j(k), (31b)

where∆ui(k) = ui(k + 1)− ui(k). Notice that the discrete-time algorithm (30) is an equivalent

iterative form of (4) obtained by Euler discretization with stepsizeδ. Whenδ → 0, we can expect

that the stability and convergence properties of (30) are similar to that of (4), i.e., xi tracks the

average of the network inputs in itsO(β−1) neighborhood, provided the network topology is

strongly connected and weight-balanced digraph.

Next, we explore the bounds on stepsizeδ such that the discrete-time algorithm (30) is convergent

and tracks the input average. In the following, we use (31) which is an equivalent representation

of (30). Before proceeding with the analysis, some comments are in order regarding the choice
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of (30) as the iterative implementation of (4). First, this structure allows us to circumvent discretizing

the derivative of the input signals and, as a result, avoid the one-step delayed tracking reported

in [17]. Next, note that asui is never communicated directly, the privacy of the agents in regards to

not to revealing their local inputs is preserved (for more discussion on privacy see Section6).

We start our analysis by studying the stability and convergence propertiesof the zero-system of

discrete-time algorithm (31), mainly to characterize the allowable stepsize range.

Lemma 4.6(Convergence analysis and stepsize characterization of the zero-system of (31))

Let G be strongly connected and weight-balanced. Forα, β > 0, the trajectory of the zero-system

of discrete-time algorithm (31) overG starting from any initial conditionx(0),v(0) ∈ R
N satisfies

xi(k) → −α
−1

N

N∑

i=1

vi(0), vi(k) → 1

N

N∑

j=1

vj(0), ∀i ∈ {1, . . . , N},

asymptotically, ask → ∞, providedδ ∈ (0,min{α−1, β−1(dout
max)

−1}).

Proof

We can represent the zero-system of discrete-time algorithm (31) in the following compact form


x(k + 1)

v(k + 1)


 = Pδ



x(k)

v(k)


 , Pδ = I2N + δA. (32)

whereA is given in (7). Then,


x(k)

v(k)


 = P k

δ



x(0)

v(0)


 .

In the proof of Lemma4.1 we showed that the eigenvalues ofA are −α with multiplicity

of N and −βλi for i ∈ {1, . . . , N}. Then, the eigenvalues ofPδ are 1− δα with multiplicity

of N and 1− δβλi, where i ∈ {1, . . . , N}. Note that the eigenvalues ofIN − δβL are 1−

δβλi. Invoking [8, Lemma 3], for a strongly connected and weight-balanced digraph, whenδ ∈

(0,min{α−1, β−1(dout
max)

−1}), the eigenvalues1− δβλi, i = 2, . . . , N , are strictly inside the unit

circle in the complex plane. Note that fori = 1, 1− δβλi = 1. Therefore, we conclude that when

δ ∈ (0,min{α−1, β−1(dout
max)

−1}), for a strongly connected and weight-balanced digraphPδ has an

eigenvalue equal to1 and the rest of the eigenvalues are located inside the unit circle. Therefore,Pδ
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is a semi-convergent matrix, i.e.,limk→∞ P k
δ exists. Therefore



x(k + 1)

v(k + 1)


−



x(k)

v(k)


 → 0, as k → ∞.

Then,



x(k + 1)

v(k + 1)


−



x(k)

v(k)


 = Pδ



x(k)

v(k)


−



x(k)

v(k)


 = δA



x(k)

v(k)


 → 0, as k → ∞.

As a result,

lim
k→∞






x(k)

v(k)





 = µ




1N

−α1N


 , µ ∈ R. (33)

For a weight-balanced digraph, left multiplying the state equation ofv by 1
⊤, we obtain

∑N

i=1 v
i(k + 1) =

∑N

i=1 v
i(k). Consequently,

∑N

i=1 v
i(k) =

∑N

i=1 v
i(0), ∀ k. Invoking (33), then

atk = ∞ we have−Nµα =
∑N

i=1 v
i(0). As a result,µ = −α−1

N

∑N

i=1 v
i(0).

The following result establishes an upper bound on the solutions of the algorithm (30) for any given

initial conditions. In the following, we letΦ(k, j) = (IN−1 − δβR⊤LR)k−j .

Theorem 4.2(Upper bound on the tracking error of (31))

Let G be strongly connected and weight-balanced. Each agent has an inputui(k). Forα, β > 0, the

trajectory of the algorithm (30) overG starting from any initial conditionz(0),v(0) ∈ R
N satisfies,

∣∣∣∣∣x
i(k)− 1

N

N∑

j=1

uj(k) +
1

N
δ

k−1∑

j=0

(1− δα)j
N∑

j=1

vj(0)

∣∣∣∣∣ ≤
∥∥∥y(t) + δ

k−1∑

j=0

(1− δα)jrr⊤w(0)
∥∥∥ ≤

∣∣∣∣∣(1− αδ

k−1∑

j=0

(1− δα)j)

∣∣∣∣∣
∥∥∥y(0)

∥∥∥+
∥∥∥Φ(k, 0)

∥∥∥
∥∥∥y(0)

∥∥∥+ α
∥∥∥(

k−1∑

j=0

Φ(k − 1, j)(1− δα)j)
∥∥∥
∥∥∥y(0)

∥∥∥+

∥∥∥(
k−1∑

j=0

Φ(k − 1, j)(1− δα)j)
∥∥∥
∥∥∥w(0)

∥∥∥+
∥∥∥

k−1∑

j=0

Φ(k − 1, j)(1− δα)j
∥∥∥
∥∥∥∆u(0)

∥∥∥+

∥∥∥R
k−1∑

j=0

Φ(k − 1, j)R⊤∆u(j)
∥∥∥, (34)

for all i ∈ {1, . . . , N}, wherey is defined in (6a) andw is

w = v − v, v = ΠN (∆u(k) + δαu(k)). (35)
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Proof

Consider the change of variables introduced in (6a), (35) and (9). Then (31), the equivalent

representation of (30), can be expressed in the following equivalent form



p1(k + 1)

q1(k + 1)


 = P̃ δ



p1(k)

q1(k)


 ,



p2:N (k + 1)

q2:N (k + 1)


 = P δ



p2:N (k)

q2:N (k)


−




0

R⊤


 (∆u(k + 1)−∆u(k) + δα∆u(k)),

whereP̃ δ = I2 + δÃ andP δ = IN−2 + δA, with Ã andA are defined in (10). For any given initial

conditions, the solution of this difference equation is

p1(k) =p1(0)− δ

k−1∑

j=0

(1− δα)jq1(0),

q1(k) =(1− δα)kq1(0),

p2:N (k) =Φ(k, 0)p2:N (0)−
k−1∑

j=0

Φ(k − 1, j)(1− δα)j(q2:N (0) +R⊤∆u(0))+

k−1∑

j=0

Φ(k − 1, j)R⊤∆u(j),

q2:N (k) =(1− δα)k(q2:N (0) +R⊤∆u(0))−R⊤∆u(k).

Recalling the change of variables (9), we have

y(k) =D11y(0) +D12w(0)−R

k−1∑

j=0

Φ(k − 1, j)(1− δα)jR⊤∆u(0)+

R

k−1∑

j=0

Φ(k − 1, j)R⊤∆u(j),

where

D11 = (1− αδ

k−1∑

j=0

(1− δα)j)rr⊤ +RΦ(k, 0)R⊤ − αR(

k−1∑

j=0

Φ(k − 1, j)(1− δα)j)R⊤,

D12 = −δ
k−1∑

j=0

(1− δα)jrr⊤ −R(

k−1∑

j=0

Φ(k − 1, j)(1− δα)j)R⊤.

Because1N
⊤
ΠN = 0, from (35) we can deduce

∑N

i=1 w
i(0) =

∑N

i=1 v
i(0). Then, it is

straightforward to obtain (34).
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The following result shows that for networks with strongly connected andweight-balanced digraph

topologies, the discrete-time algorithm (30) solves Problem1 with a nonzero steady-state error,

providedδ ∈ (0,min{α−1, β−1(dout
max)

−1}), the algorithm is initialized properly and the essential

norm of the projection of the input difference vector into the agreement space is bounded.

Corollary 4.2(The algorithm (30) solves Problem1)

Let G be strongly connected and weight-balanced. Assume that the differences of the inputs of the

network satisfy‖ΠN∆u‖ess= γ <∞. Then, for anyα, β > 0, the algorithm (30) overG initialized

at zi(0) ∈ R andvi(0) ∈ R such that
∑N

i=1 v
i(0) = 0 solves Problem1 (in the outputxi) with an

upper-bounded steady-state error. Specifically, fori ∈ {1, . . . , N}

lim
k→∞

∣∣∣∣∣x
i(k)− 1

N

N∑

j=1

uj(k)

∣∣∣∣∣ ≤ (δβλ̂2)
−1γ,

providedδ ∈ (0,min{α−1, β−1(dout
max)

−1}).

Proof

We showed in Theorem4.2 that, for any given stepsize, the bound (34) on the outputxi of

algorithm (30) holds. In the following, for the stepsizes satisfyingδ ∈ (0,min{α−1, β−1(dout
max)

−1}),

we find the limiting value of the terms of this bound whenk → ∞. Notice that0 < δ < α−1,

then 0 < (1− αδ) < 1. As a result, whenk → ∞ we have
∑k−1

j=0 (1− δα)j = (δα)−1, leading

to (1− αδ
∑k−1

j=0 (1− δα)j) → 0 as k → ∞. RecallΦ(k, j) = (IN−1 − δβR⊤LR)k−j . Because

0 < δ < β−1(dout
max)

−1, the spectral radius ofΦ(1, 0) is less than one, thereforeΦ(k, 0) → 0

and
∑k−1

j=0 Φ(k − 1, j) = (δβR⊤LR)−1 ask → ∞ (see [19, Fact 10.3.1.xiii]). Also, there exists

ω ∈ (0, 1) such thatρ(Φ(1, 0)) < ω < 1. Then∃µ > 0 such that
∥∥∥Φ(k − 1, j)

∥∥∥ ≤ µωk−1−j for

0 < j ≤ k − 1, [22, pp. 26]. As a result, we have

∥∥∥
k−1∑

j=0

Φ(k − 1, j)(1− δα)j
∥∥∥ ≤ µ

k−1∑

j=0

ωk−1−j(1− δα)j .

Notice that

k−1∑

j=0

ωk−1−j(1− δα)j = ωk−1
k−1∑

j=0

(
1− δα

ω
)j = (1− δα)k−1

k−1∑

j=0

(
ω

1− δα
)j .
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Then, ask → ∞ we have

∥∥∥
k−1∑

j=0

Φ(k − 1, j)(1−δα)j
∥∥∥≤µ

k−1∑

j=0

ωk−1−j(1−δα)j=





ωk−1(1− 1−δα
ω

)→0, ω>1−δα,

(k−1)ωk−1→0, ω=1−δα,

(1−δα)k−1(1− ω
1−δα )→0, ω<1−δα.

Invoking [19, Fact 8.18.12], we have

∥∥∥(R⊤LR)−1
∥∥∥ = σmax((R

⊤LR)−1) ≤ σmax((R
⊤ Sym(L)R)−1) = λ̂−1

2 .

Also, notice that∀k ≥ 0, we have
∥∥∥R⊤∆u(k)

∥∥∥ =
∥∥∥R⊤

ΠN∆u(k)
∥∥∥ ≤

∥∥∥R⊤
∥∥∥
∥∥∥ΠN∆u(k)

∥∥∥ ≤ γ.

Using the limiting values above, we can conclude that

∥∥∥
k−1∑

j=0

Φ(k − 1, j)R⊤∆u(j)
∥∥∥ ≤ γ

∥∥∥
k−1∑

j=0

Φ(k − 1, j)
∥∥∥ = γ

∥∥∥(δβR⊤LR)−1
∥∥∥ ≤ γ/(δβλ̂2).

This completes the proof.

One can make similar comments to those of Remark4.2 regarding the tuning of the performance

of (30) via the design parametersα andβ. In the following, we identify conditions, involving inputs

and their differences, under which the algorithm (30) solves Problem1 with zero steady-state error.

Lemma 4.7(Conditions on inputs for zero steady-state error of (30))

Let G be strongly connected and weight-balanced. Assume there existsδ ∈

(0,min{α−1, β−1(dout
max)

−1}) and α > 0 such that for alli ∈ {1, . . . , N}, one of the following

conditions are satisfied

(a) ∆ui(k) + δαui(k) converges to a common dynamicsl(k);

(b) ∆ui(k + 1)−∆ui(k) + δα∆ui(k) converges to a common dynamicsl(k).

Then, the algorithm (30) over G with the givenδ and α, zi(0) ∈ R, and vi(0) ∈ R such that

∑N

i=1 v
i(0) = 0, for anyβ > 0, makesxi(k) → 1

N

∑N

j=1 u
j(k), ask → ∞, for all i ∈ {1, . . . , N}.

Proof

Recall the change of variable (6a), then an equivalent representation of (30) can be stated as follows

Copyright c© 201X John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control(201X)

Prepared usingrncauth.cls DOI: 10.1002/rnc



26 S. S. KIA, ET AL.

(compact form)



y(k + 1)

v(k + 1)


 = Pδ



y(k)

v(k)


+



ΠN (∆u(k) + αδu(k))

0


 , (36)

wherePδ is defined in (32). When condition (a) holds we haveΠN (∆u(k) + δαu(k)) → 0, as

k → ∞. Then (36) is a linear system with a vanishing inputΠN (∆u(k) + δαu(k)). Therefore, it

converges to the equilibrium of its zero-system. Notice that the system matricesof (36) and (31)

are the same. Therefore, whenδ ∈ (0,min{α−1, β−1(dout
max)

−1}), we can use result of Lemma4.6

to conclude thatyi(k) → −α−1

N

∑N

i=1 v
i(0), for i ∈ {1, . . . , N}. Because

∑N

i=1 v
i(0) = 0, then we

havexi(t) → 1
N

∑N

j=1 u
j(k) globally asymptotically fori ∈ {1, . . . , N}. Next, notice that using the

change of variables (6a) and (35) another equivalent representation of (30) can be stated as follows

(compact representation)



y(k + 1)

w(k + 1)


 = Pδ



y(k)

w(k)


−




0

ΠN (∆u(k + 1)−∆u(k) + δα∆u(k))


 , (37)

wherePδ again is defined in (32). When condition (b) holds we haveΠN (∆u(k) + δαu(k)) → 0

as k → ∞. Then, (37) is a linear system with a vanishing inputΠN (∆u(k + 1)−∆u(k) +

δα∆u(k)). Then, using a similar argument used for (36) above, we can show that in (37)

yi(k) → −α−1

N

∑N

i=1 w
i(0) ask → ∞ for i ∈ {1, . . . , N}. Using (35), we can show

∑N

i=1 w
i(0) =

∑N

i=1 v
i(0). As a resultxi(k) → 1

N

∑N

j=1 u
j(k) globally asymptotically fori ∈ {1, . . . , N}.

5. DYNAMIC AVERAGE CONSENSUS WITH CONTROLLABLE RATE OF

CONVERGENCE AND LIMITED CONTROL AUTHORITY

In this section, we address the dynamic average consensus Problems2 and 3. As discussed in

Section3, the goal in setting up these problems is to come up with an algorithm which is more

suitable for applications where the agreement statexi in (3) corresponds to some physical variable

such as position of a robotic system. In such networked systems, agents might have limited control

authority and can not implement the high-rate commands dictated by the consensus algorithm.
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Although the rate of convergence of the algorithm can be controlled by the choice ofα andβ, these

variables are centralized variables and the effect is universal across the network. One can expect that

a more efficient consensus algorithm is one that allows agents with limited powerto move at their

own pace. To this end, we make a modification to the structure of the consensus algorithm (4),

żi = −α(zi − ui)− β

N∑

j=1

Lijz
j − vi + u̇i, (38a)

v̇i = αβ

N∑

j=1

Lijz
j , (38b)

ẋi = −θi(t)(xi − zi)− α(zi − ui)− β

N∑

j=1

Lijz
j − vi + u̇i, (38c)

whereθi : [0,∞) → R is a time-varying gain which is bounded from below and above, i.e., at

all t ≥ 0 we have0 < θi ≤ θi(t) ≤ θ̄i, for i ∈ {1, . . . , N}. As we show below, agents that wish

to slow down their rate of convergence use this gain to adjust it. Note the cascading structure of

the algorithm. As such, the stability properties of (38a)-(38b) (information phase) are independent

of (38c) and are as characterized in Section4. The information phase allows agents to obtain the

average with a convergence rate that is common across the network. The dynamics (38c) (motion

phase) allows each agenti ∈ {1, . . . , N} to tweak its convergence rate by adjusting the gainθi. We

start our analysis by examining the rate of convergence of the algorithm (38) and establishing an

upper bound on its tracking error.

Lemma 5.1(The algorithm (38) solves Problem2)

LetG be strongly connected and weight-balanced. For inputs whose derivatives satisfy‖ΠN u̇‖ess=

γ <∞, for anyα > 0 andβ > 0 the algorithm (38) initialized atxi(0) ∈ R andvi(0) ∈ R such that

∑N

i=1 v
i(0) = 0, then we have the same ultimate tracking error bound of (22). The rate of decay of

the transient response ismin{θi, α, βλ̂2} for each agenti ∈ {1, . . . , N}.

Proof

Consider the information phase (38a)-(38b). From Theorem4.1 and Corollary4.1, follows that
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zi − 1
N

∑N

j=1 u
j(t) has the ultimate bound

lim
t→∞

sup

∣∣∣∣∣z
i(t)− 1

N

N∑

j=1

uj(t)

∣∣∣∣∣ ≤ (βλ̂2)
−1γ, (39)

and converges to this neighborhood of the input average with a rate ofmin{α, βλ̂2}. Next, consider

the motion phase (38c), which can be written as

ẋi = −θi(t)(xi − zi) + żi, i ∈ {1, . . . , N}, ∀t ≥ 0.

With the change of variablesdi = xi − zi, i ∈ {1, . . . , N}, this can be equivalently written as

ḋi = −θi(t)di, i ∈ {1, . . . , N}, ∀t ≥ 0. (40)

Using the Lyapunov functionV i = 1
2 (d

i)2, it is not difficult to show that, for0 < θi ≤ θi(t) ≤

θ̄i, (40) is an exponentially stable system which satisfies the following bound

∣∣xi(t)− zi(t)
∣∣ =

∣∣di(t)
∣∣ ≤

∣∣xi(0)− zi(0)
∣∣ e−θit, i ∈ {1, . . . , N}, ∀t ≥ 0.

Therefore,
∣∣∣∣∣x

i(t)− 1

N

N∑

j=1

uj(t)

∣∣∣∣∣ ≤
∣∣xi(0)− zi(0)

∣∣ e−θit +

∣∣∣∣∣z
i(t)− 1

N

N∑

j=1

uj(t)

∣∣∣∣∣ , i ∈ {1, . . . , N}, ∀t ≥ 0.

As such, we conclude that (22) is satisfied. The rate of convergence of agenti is

min{θi, α, βλ̂2}.

As before, the design parametersα andβ can be used to tune the overall rate of convergence.

Agents who wish to move at a slower pace can use the motion phase withθi ≤ min{α, βλ̂2} to

accomplish their goal. The time-varying nature ofθi allows for agents to accelerate and decelerate

the convergence as desired. Notice that the ultimate error bound guaranteed by algorithm (38) is

the same as the one for algorithm (4). Therefore, the local first-order filter (38c) adjusts the rate of

convergence without having any adverse effect on the error bound.

Remark 5.1(Discrete-time implementation and switching networks)

The results above can be extended to switching networks and discrete-time settings. For brevity

this extension is omitted. In the discrete-time implementation, it is straightforward to show that for

convergence we should requireδ ∈ (0,min{ ¯̄θ−1, α−1, β−1(dout
max)

−1}), where¯̄θ = max
i∈{1,...,N}

{θ̄i}.✷
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Next, we consider the case when saturation is present in the driving command. The following result

states that, under suitable conditions, the algorithm (38) is a solution for Problem3 with the same

error bounds as if no saturation was present.

Lemma 5.2(The algorithm (38) solves Problem3)

Let G be strongly connected and weight-balanced. Suppose the driving command at each agent

i ∈ {1, . . . , N} is bounded bȳci > 0, i.e.,ẋi = − satc̄i(c
i). Assume for every agenti ∈ {1, . . . , N},

the following holds: (a) the input signal at each agent is such that1
N

∑N

j=1 u
j is bounded, the

input derivatives satisfy‖ΠN u̇‖ess= γ <∞, and‖u̇i‖ess= µi <∞; (b) c̄i > µi + γ. Then, for any

α, β > 0, and constantθi > 0, the algorithm (38) starting from anyxi(0) ∈ R andvi(0) ∈ R such

that
∑N

i=1 v
i(0) = 0 satisfies that the ultimate tracking error bound (22).

Proof

Consider the information phase of the algorithm, i.e., (38a) and (38b). Following the proof of

Lemma5.1for the information phase, we have (39). To complete the proof, we will show that under

the given conditions for the input signals, despite the saturation,xi → zi asymptotically for all

i ∈ {1, . . . , N}. Under the saturation constraint, (38c) takes the forṁxi = − satc̄i(θ
i(xi − zi) + ż),

for i ∈ {1, . . . , N}. The rest of the proof relays on PropositionA.2. According to this result, we

need to show that a)zi is a bounded signal; b)|żi(t)| < c̄i for all t > t⋆ wheret⋆ is some finite

time. For any given finite initial conditions and input signals with bounded average the requirement

(a) is satisfied due to convergence guarantees of (38a)-(38b). In the following, we show that the

requirement (b) is also satisfied due to the given assumptions. With change of variables (6b) and

y = z − 1
N

∑N

j=1 u
j
1N , we can represent (38a) as follows

ż = −αy − βLy −w +
1

N

N∑

j=1

u̇j1N .

Therefore, for alli ∈ {1, . . . , N},

lim
t→∞

∣∣żi(t)
∣∣ ≤ lim

t→∞

∣∣∣∣∣−αy
i(t)−wi(t) +

1

N

N∑

j=1

u̇j(t)

∣∣∣∣∣+ lim
t→∞

∥∥∥βLy(t)
∥∥∥

Copyright c© 201X John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control(201X)

Prepared usingrncauth.cls DOI: 10.1002/rnc



30 S. S. KIA, ET AL.

Using the results and the variables introduced in the proof of Theorem4.1, we can show that

−αy −w +
1

N

N∑

j=1

u̇j1N = −
[
αS11 + S21 αS12 + S22

]


y(0)

w(0)


− e−αt RR⊤u̇(0) + u̇(t),

whereS11 andS12 are given in (18), and we have

S21 = −αRΦ(t, 0) + α2R(

∫ t

0

Φ(t, τ) e−ατ dτ)R⊤ + αRR⊤ e−αt,

S22 = rr⊤ + αR(

∫ t

0

Φ(t, τ) e−ατ dτ)R⊤ +RR⊤ e−αt . (41)

Recall thatΦ(t, τ) = e−βR⊤
LR(t−τ), then,

∥∥∥βLR

∫ t

0

Φ(t, τ)R⊤u̇(τ)dτ
∥∥∥ =

∥∥∥βRR⊤LR

∫ t

0

Φ(t, τ)R⊤u̇(τ)dτ
∥∥∥ =

∥∥∥R e−βR⊤
LRt

∫ t

0

βR⊤LR eβR
⊤
LRτ R⊤

ΠN u̇(τ)dτ
∥∥∥ ≤

∥∥∥R e−βR⊤
LRt

∫ t

0

βR⊤LR eβR
⊤
LRτ dτ‖ΠN u̇‖ess

∥∥∥ =

∥∥∥R e−βR⊤
LRt(eβR

⊤
LRt −IN )‖ΠN u̇‖ess

∥∥∥ ≤ ‖ΠN u̇‖ess+ e−βλ̂2t ‖ΠN u̇‖ess

Recall (21). In light of the relations above we can show that

lim
t→∞

∣∣żi(t)
∣∣ ≤ µi + γ, i ∈ {1, . . . , N}.

Therefore, there exists a finite timet⋆ such that|żi(t)| < c̄i for all t > t⋆ andi ∈ {1, . . . , N}.

6. DYNAMIC AVERAGE CONSENSUS WITH PRIVACY PRESERVATION

Here, we study the dynamic average consensus problem with privacy preservation. We consider

adversaries that do not interfere with the implementation of the algorithm but are interested in

retrieving information about the inputs, their average, or the agreement state trajectories of the

individual agents. These adversaries might beinternal, i.e., part of the network, orexternal. Internal

adversaries have access at no cost to certain information that externaladversaries do not. More

specifically, an internal adversary has knowledge of the parametersα, β of the algorithm (4), its

corresponding row in the Laplacian matrix, and the agreement state of its out-neighbors. We also
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assume that the agent is aware of whether the algorithm is initialized withv(0) = 0. We refer to the

extreme case when an internal adversary knows the whole Laplacian matrixand the initial conditions

of its out-neighbors as aprivileged internal adversary. Regarding external adversaries, we assume

they have access to the time history of all the communication messages. We referto the extreme

case when an external adversary has additionally knowledge of the parametersα, β, the Laplacian

matrix, and the initial conditions as aprivileged external adversary.

The next result characterizes the privacy-preservation propertiesof the dynamic average consensus

algorithm (4) against adversaries. Specifically, we show that this algorithm satisfies Problem4(a).

Lemma 6.1(The algorithm (4) preserves the privacy of the local inputs against adversaries)

Let G be strongly connected and weight-balanced. The executions of the algorithm (4) overG with

α, β > 0, initialized atxi(0) ∈ R andvi(0) ∈ R such that
∑N

i=1 v
i(0) = 0, satisfy

(a) an external (respectively internal) adversary cannot reconstruct the input of any (respectively

another) agent;

(b) a privileged adversary cannot reconstruct the input of agenti ∈ {1, . . . , N} as long as there

existst̄ > 0 such thatu̇i(t) 6= 0 for t ∈ [0, t̄).

Proof

First, we investigate the validity of claim (a). Using the results in the proof of Theorem4.1 and

recalling the change of variables (6), the solution of the algorithm (4) for given initial conditions

xi(0) ∈ R andvi(0) ∈ R, for i ∈ {1, . . . , N} can be written as follows



x(t)

v(t)


 =



S11 S12

S21 S22






x(0) + ( 1

N

∑N

j=1 u
j(0))1N

v(0) +ΠN (u̇(0) + αu(0))


+



( 1
N

∑N

j=1 u
j(t))1N

ΠN (u̇(t) + αu(t))


+ (42)




−R
∫ t

0
Φ(t, τ) e−ατ dτ R⊤u̇(0) +R

∫ t

0
Φ(t, τ)R⊤u̇(τ)dτ

αR
∫ t

0
Φ(t, τ) e−ατ dτ R⊤u̇(0)− αR

∫ t

0
Φ(t, τ)R⊤u̇(τ)dτ + e−αt RR⊤u̇(0)−RR⊤u̇(t)




whereS11 andS12 are given in (18), andS21 andS22 are given in (41). For an external adversary

that only has knowledge of the time history ofx, the number of unknowns in (42) (i.e.,u(0), u(t),

u̇(t), v(t), for ∀t ≥ 0, α, β andL), regardless of the initial condition requirement
∑N

i=1 v
i(0) = 0,
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is larger than the number of equations. This is true even if the inputs are static.Thus, the claim

(a) for external adversaries follows. Regarding the claim (a) for internal adversaries, we consider

the extreme case where the adversarial agent, sayj, is the in-neighbor of every other agent in the

network, and therefore knows the time history of the aggregated vectorx. Now consider (4b) for all

i ∈ V \ {j}. Recall that agentj does not knowLik, k ∈ V, of all agenti ∈ V \ {j}. Therefore,

even if it knows the initial conditionvi(0), it cannot obtainvi(t), t > 0. Next consider (4a),

and again assume an extreme case that the adversarial agentj can numerically reconstrucṫxi

with an acceptable precision and the inputs are static. Despite these assumptions, becauseui and

∑N

k=1 Likx
k, ∀t ≥ 0 of all agenti ∈ V \ {j} are unknown to agentj, regardless of value ofvi, this

agent cannot reconstructui from (4b). This concludes validity of the claim (a) for internal agents.

Next, we examine claim (b) considering both the internal and external adversary case at the same

time. For an internal adversary, assume the extreme case when it is the in-neighbor of every other

agent in the network. As a result, it knows the time history of the aggregated vectorx. At any given

τ > 0, using its knowledge ofx(t) over t ∈ [0, τ ] and the information on the initial conditions and

the parameters of the algorithm, a privileged internal or external adversary can reconstructvi(t),

i ∈ {1, . . . , N}, for all t ∈ [0, τ ] by integrating (4b). The adversary can also use its knowledge of

x(t) overt ∈ [0, τ ] to construct numericallẏx(t) over the same period of time. Then, the adversary

using (4a), knows the right-hand side of the following equation

u̇i + αui = −ẋi − αxi − β

N∑

j=1

Lijx
j − vi, ∀i ∈ {1, . . . , N}. (43)

Because there exists̄t > 0 such thatu̇i(t) 6= 0 for t ∈ [0, t̄), (43) is an ordinary differential equation

(ODE) with variableui. The adversary does not know the initial conditionui(0), hence, it cannot

obtain the unique solution of the ODE, i.e., the dynamic inputui. This validates claim (b).

Remark 6.1(Privacy preservation of static inputs against privileged adversaries)

To protect local static inputs from privileged adversaries, agents can add a static or time-varying

value to their inputs at the beginning for some short period of time (so that the requirement
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of Lemma 6.1(b) is satisfied) and then remove it. This modification does not affect the final

convergence properties of the algorithm (4). ✷

In general, the algorithm (4) does not satisfy the requirements (b) and (c) of Problem4. Here, we

propose a slight extension of (38) that overcomes this shortcoming. For eachi ∈ {1, . . . , N}, let

żi = −α(zi − ui)− β

N∑

j=1

Lij z̃
j − vi + u̇i, (44a)

v̇i = αβ

N∑

j=1

Lij z̃
j , (44b)

ẋi = −θi(t)(xi − zi) + (zi − ui)− β

N∑

j=1

Lij z̃
j − vi + u̇i, (44c)

z̃i = zi + ψ(t), (44d)

where ψ : [0,∞) → R is a common dynamic signal which is known to all agents. Also,θi :

[0,∞) → R such thatθi ≤ θi(t) ≤ θ̄i for all t ≥ 0 is a local signal only known to agenti. The role

of the signalψ is to conceal the final agreement value from the external adversaries tosatisfy the

item (b) in Problem4. Note that, because
∑N

j=1 Lij = 0, the signalψ has no effect on the algorithm

execution, and therefore, the executions of algorithms (44) and (38) are the same. Consequently,

Lemma5.1 is valid for (44) as well. As agents communicatẽzi instead ofzi, and the signalψ

is unknown to the external adversaries, recovering the steady-state solution of the algorithm is

impossible for such adversaries. The agreement state equation of any agent i in (44c) is a local

equation, with all the components set by that agent. Therefore,xi(0) andθi can easily be concealed

from other agents, making it impossible for adversaries to reconstruct thetrajectories ofxi. This

allows us to satisfy the item (c) in Problem4. The following result shows that the algorithm (44)

is privacy preserving and solves Problem4. Its proof is a consequence of the above discussion and

Lemmas5.1and6.1, and is omitted for brevity.

Lemma 6.2(The algorithm (44) solves Problem4)

Under the hypotheses of Lemma5.1, the ultimate tracking error bound (22) is valid for all

trajectoriest 7→ xi(t) of the algorithm (44) Furthermore,
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Figure 1. Weight-balanced digraphs used in simulation (alledge weights are equal to1).

(a) an external (respectively internal) adversary cannot reconstruct the input of any (respectively

another) agent;

(b) a privileged adversary cannot reconstruct the input of agenti ∈ {1, . . . , N} as long as there

existst̄ > 0 such thatu̇i(t) 6= 0 for t ∈ [0, t̄);

(c) external adversaries cannot obtain the final agreement value of the network as long asψ is

unknown to them;

(d) an adversary cannot reconstruct the trajectoryt 7→ xi(t) of agenti ∈ {1, . . . , N} as long as

xi(0) or θi is unknown to it.

7. SIMULATIONS

Here, we evaluate the performance of the proposed dynamic average consensus algorithms in a

number of scenarios. Fig.1 shows the weight-balanced digraphs employed in simulation.

7.1. Dynamic inputs offset by a static value

Consider a process described by a fixed value plus a sine wave whose frequency and phase are

changing randomly over time. A group of6 agents with the communication topology shown in

Fig. 1(a) monitors this process by taking synchronous samples, each according to

ui(m) = 2 + sin(ω(m)t(m) + φ(m)) + bi, m = 0, 1, . . . .

Because of the unknown fixed biasbi of each agent, after each sampling, every agent wants

to obtain the average of the measurements across the network before the next sampling time.

Here,ω ∼ N(0, 0.25), φ ∼ N(0, (π/2)2), with N(., .) indicating a Gaussian distribution. The data is

Copyright c© 201X John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control(201X)

Prepared usingrncauth.cls DOI: 10.1002/rnc



DYNAMIC AVERAGE CONSENSUS 35

t
0 10 20 30

0

2

4

6

x
i

Figure 2. Simulation results for the numerical example of Section 7.1; The solid lines: the agreement states

of (30); ×: sampling points atm∆t; ◦: the average atm∆t; +: the average atkδ.

sampled at 0.5 Hertz, i.e.,∆t = 2 seconds. The bias at each agent isb1 = −0.55, b2 = 1, b3 = 0.6,

b4 = −0.9, b5 = −0.6, and b6 = 0.4. Between sampling timesm andm+ 1, the inputui(k) is

fixed at ui(m). Figure 2 shows the result of the simulation using the discrete-time consensus

algorithm (30) with α = β = 1. The communication bandwidth is 2 Hertz, i.e.,δ = 0.5 seconds.

The application of (30) results in perfect tracking after some time as forecasted by Lemma4.7.

Notice that in this example as it is impossible for agents to knowui(−1), the use of the algorithm

in [17], which requires the agents to initialize their agreement states atui(−1), results in tracking

with a steady-state error.

7.2. Networks with time-varying interaction topologies

Consider a group of6 agents whose communication topology is time-varying. We consider the

following cases for the input signals

Case 1:





u1(t) = 5 sin t+ 1
t+2 + 1,

u2(t) = 5 sin t+ 1
(t+2)2 + 2,

u3(t) = 5 sin t+ 1
(t+2)3 + 3,

u4(t) = 5 sin t+ 10 e−t +4,

u5(t) = 5 sin t+ atant− 1.5,

u6(t) = 5 sin t− tanh t+ 1

Case 2:





u1(t) = 0.55 sin(0.8t),

u2(t) = 0.5 sin(0.7t) + 0.5 cos(0.6t),

u3(t) = 0.1t,

u4(t) = atan(0.5t),

u5(t) = 0.1 cos(2t),

u6(t) = 0.5 sin(0.5t).
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Figure 3. Simulation results for Case 1 and Case 2 of the numerical example of Section7.2: Solid thick blue

line (colored thin lines) is the input average (resp. agreement state of agents).

In Case 1, the communication topology iteratively changes, in alphabetical order, every two

seconds among the digraphs in Fig.1(b)-(e). In Case 2, the communication topology changes, in

alphabetical order, every two seconds among the digraphs in Fig.1(a)-(e). Aftert = 10 seconds, the

communication topology is fixed at the digraph in Fig.1(a). Figure3 shows the simulation results

generated by implementing the algorithm (4) with the following parameters: in Case 1,α = β = 1

and in Case 2,α = 3 andβ = 10.

These examples show that, as long as the switching signal belongs toSadmis, the agreement statexi

stays bounded. In Case 1, because the input signals converge to a common function, the version

of Lemma 4.3 for switching networks implies that the algorithm (4) converges to the average

with zero steady-state error. However, in Case 2, we only can guarantee tracking with bounded

steady-state error. During the times that the network is only weight-balanced, the error grows but

still stays bounded. One can expect that each connected group converges to their respective input

average. During these periods of time, there is no way for separate components to have knowledge

of the other groups’ inputs. However, once the network is strongly connected and weight-balanced,

then (4) resumes its tracking of the input average across all network, as expected.

7.3. Limited control authority

We use the following numerical example to demonstrate the performance of the algorithms (4)

and (38) when the driving command is bounded. Consider a group of 6 agents whose communication
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(b) Dynamic average consensus algorithm (38)

Figure 4. Simulation results for the numerical example of Section7.3: Solid blue line (black dashed lines) is

the input average (resp. agreement state of agents).

topology is given in Fig.1(a). The input signals are as follows

u1(t) = u(t) (4 cos(0.5t) + 10), u2(t) = u(t)(4 tanh(t− 5) + 4 tanh(t− 25) + 5),

u3(t) = u(t)(4 sin(0.5t+ 1) + 8), u4(t) = u(t)(4atan(0.5t− 5)− 6),

u5(t) = u(t)(sin(2t)− 5), u6(t) = u(t)(4 cos(0.5t) + 7),

whereu(t) =
∑∞

i=0((−1)iH(t− 10 i)), in which H is the step function,H(t) = 0 if t < 0, and

H(t) = 1 if t ≥ 0. For both algorithms (4) and (38) we useα = 10 andβ = 15. In the algorithm (38)

we setθi = 1 and we use the saturation boundc̄i = 15 for all i ∈ {1, . . . , 6}. Figure4 shows the

results of the simulation for these two algorithms. Using high values forβ we can reduce the tracking

error, however, this results in higher driving commands. As a result, bothalgorithms violate the

saturation bound. However, because the requirements of Lemma5.2are satisfied in this example, as

shown in Fig.4(b), the ultimate tracking behavior of the agreement states of the algorithm (38)

despite the saturation resembles the response of the algorithm (4) in the absence of saturation

bounds. There is not such guarantees for the algorithm (4) (see Fig.4(a)).

8. CONCLUSIONS

This paper has addressed the multi-agent dynamic average consensus problem over strongly

connected and weight-balanced digraphs. We have proposed a distributed algorithm that makes
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individual agents track the average of the dynamic inputs across the network with a steady-

state error. We have characterized how this error and the rate of convergence depend on the

design parameters of the proposed algorithm, and identified special casesof inputs for which

the steady-state error is zero. Our algorithm enjoys the same convergence properties in scenarios

with time-varying topologies and is amenable to discrete-time implementations. We havealso

considered extensions of the algorithm design that can handle limited controlauthority and privacy

preservation requirements against internal and external adversaries. Future work will include the

study of discrete-time implementations with time-varying topologies and limited control authority,

the design of provably-correct algorithms that do not require a priori weight-balanced interaction

topologies, and applications to distributed estimation and map merging scenarios.
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A. SUPPORTING MATERIAL FOR THE PROOF OF LEMMA5.2

The following results are used in the proof of Lemma5.2.

Proposition A.1

Consider the system

ẏ = −β satc̄(y − w)− βw, (45)

where x,w, β ∈ R, β > 0 and w is a piece-wise continuous time-varying signal. Assume that

||w||ess< c̄. Then, for any initial conditiony(0) ∈ R, y(t) → 0 asymptotically.
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Proof

Consider the candidate Lyapunov functionV = 1
2β y

2 with derivative V̇ = −y satc̄(y − w)− yw

along the trajectories of (45). To prove thatV̇ is negative definite, first note that because||w||ess< c̄,

we have that ify − w > c̄ theny > c̄+ w > 0 and ify − w < −c̄ theny < −c̄+ w < 0. As a result,

V̇ =





−y(c̄+ w) ≤ −(c̄− ||w||ess)|y| < 0, if y − w > c̄,

−y2 < 0, if |y − w| ≤ c̄,

−y(−c̄+ w) ≤ −(c̄− ||w||ess)|y| < 0, if y − w < −c̄.

All the conditions of the Lyapunov stability analysis for non-autonomous systems [23, Theorem

4.9] are satisfied globally. Therefore,y(t) → 0 globally asymptotically ast→ ∞.

Proposition A.2

Consider the system

ẋ = − satc̄(β(x− u)− u̇), (46)

wherex, u ∈ R andu is a piece-wise continuous time-varying signal. Assumeu and its derivative

u̇ are both essentially bounded signals, and there is some finitet⋆ > 0 such that for allt ≥ t⋆,

|u̇(t)| < c̄. Then, for any initial conditionx(0) ∈ R we havex(t) → u(t) asymptotically.

Proof

Given that (46) is ISS, c.f. [24], and sinceβu+ u̇ is bounded, for any finite initial conditionx(0),

there is a finiteµ(x(0)) > 0 such that we have|x| < µ(x(0)) for all t ≥ 0. Under the change of

variablesy = β(x− u), equation (46) can be written in the following equivalent form

ẏ = −β satc̄(y − u̇)− βu̇. (47)

Since the solutions of (46) are all bounded and because bothu andx are bounded signals, starting

from any initial condition, we have the guarantee that the solutions of (47)) are also bounded. Since

the inputu̇ to the system (47) satisfies the conditions of PropositionA.1 after some finite timet⋆,

we can conclude thaty(t) → 0, or equivalentlyx(t) → u(t), globally asymptotically.
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