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SUMMARY

This paper introduces a novel continuous-time dynamicameiconsensus algorithm for networks whose
interaction is described by a strongly connected and weglinced directed graph. The proposed
distributed algorithm allows agents to track the averageeaif dynamic inputs with some steady-state error
whose size can be controlled using a design parameter. Hadysstate error vanishes for special classes
of input signals. We analyze the asymptotic correctnesi@faigorithm under time-varying interaction
topologies and characterize the requirements on the geefmi discrete-time implementations. We show
that our algorithm naturally preserves the privacy of trealanput of each agent. Building on this analysis,
we synthesize an extension of the algorithm that allowsviddal agents to control their own rate of
convergence towards agreement and handle saturation $auntthe driving command. Finally, we show
that the proposed extension additionally preserves thagyiof the transient response of the agreement
states and the final agreement value from internal and ettadversaries. Numerical examples illustrate

the results. Copyrigh© 201X John Wiley & Sons, Ltd.
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2 S.S.KIA, ET AL.

1. INTRODUCTION

This paper studies the dynamic average consensus problem for a kefinsartonomous agents.
Given a set of time-varying signals, one per agent, this problem conéidésigning a distributed
algorithm that allow agents to track the time-varying average of the signalg asiy information
from neighbors. Solutions to this problem are of interest in scenariog¢haire the fusion of
dynamic and evolving information collected by multiple agents. Examples include rabtii-
coordination [], distributed spatial estimatior2] 3], sensor fusion 4, 5], feature-based map
merging p], and distributed tracking7]. We are particularly interested in algorithmic solutions
that allow agents to adjust the rate of convergence towards agreengeabl@to handle constraints

on actuation, and preserve the privacy of the information available to tgamsi adversaries.

Literature review. Consensus problems have been intensively studied over the lastTearain
body of work focuses on the static case, where agents aim to reackhnsoisson a function
depending on initial static values, see e#8.9, 10, 11, 12] and references therein. In contrast,
the literature on dynamic consensus is not as rich. The initial widilgJroposes a dynamic average
consensus algorithm that is able to track, with zero steady-state erraydrage of dynamic inputs
whose Laplace transfer function has all its poles in the left half-plarteaimost one pole at the
origin, but is not robust to initialization errors. Id][ the authors generalize the static consensus
algorithm of [L4] to track the average of inputs with bounded derivatives which diffea lzgro-
mean Gaussian noise. The algorithm acts as a low-pass filter that allovis amack the average
of dynamic inputs with a non-zero steady-state error, which vanishes ialtbence of noise.
Using input-to-state stability analysid,q] proposes a proportional-integral algorithm to solve the

dynamic consensus problem which, from any initial condition, convesgfbaon-zero steady state
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DYNAMIC AVERAGE CONSENSUS 3

error if the signals are slowly time-varying, and exactly if the signals are sfHtis algorithm
is generalized in16] to achieve zero-error dynamic average consensus of a specialoflime-
varying input signals whose Laplace transform is a rational function vatpales in the left-hand
complex plane. The proposed algorithm employs frequency-domain tabexaioits the properties
of the inputs’ Laplace transforms. All the algorithms mentioned above aigradEsin continuous
time and work for networks with a fixed, connected, and undirected gigmblogy. The results
of [15) can be applied to networks with a strongly connected and weight-balageghh topology
provided each agent can communicate with its out-neighbors and knowgitpetsvof its incoming
edges. Such requirement may be hard to satisfy in scenarios where dhagiofs changing. The
work [17] develops an alternative class of discrete-time algorithms for dynamicgazemmsensus
whose convergence analysis relies on input-to-output stability proparties presence of external
disturbances. With a proper initialization of the internal states, the propsidegines can track,
with bounded steady-state error, the average of the time-varying inposewth-order difference
is bounded. If thexth-order difference is asymptotically zero, the estimates of the averagergen
to the true average asymptotically with one timestep delay. These algorithms tarebost to
initialization errors. A common limitation of the works cited above is the lack of camattbn
of restrictions on the rate of convergence of individual agents, betindntrol authority, or privacy
issues. Regarding the latter, the above algorithms require agents to stinegthement state with
their neighbors, and, in some cases, even their local inputs. Therdfadversaries are able to
listen to the exchanged messages, they could infer local inputs, sensitiggetit responses and

final agreement states of the network.

Statement of contributiondMe begin by providing a formal statement of the dynamic average
consensus problem for a multi-agent system, paying special attention tat¢hefrconvergence,
limits on control actuation, and the preservation of privacy. Our starting fthe introduction of a
continuous-time algorithm that allows the group of agents communicating otrengly connected
and weight-balanced digraph to track the average of their referenatsinfith some steady-state
error. We carefully characterize the asymptotic convergence prap@etftithe proposed strategy,
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4 S.S.KIA, ET AL.

including its rate of convergence, its robustness against initializationsemmaod its amenability
to discrete-time implementations. We also discuss how the algorithm performspecifically,
the steady-state error and the transient response) can be tuned vizgiga garameters. For
special classes of inputs, which include static inputs and dynamic inputs diffiehby a constant
value, we show that the steady-state error vanishes. We also establiglydhithm correctness
under time-varying network topologies that remain weight-balanced aridfanigely often jointly
strongly connected. Our next step is the introduction of an extension gbrtosed dynamic
average consensus algorithm to include a local first-order filter at agetit. We show how this
extension allows individual agents to tune their rate of convergence devemgreement without
affecting the rest of the network or changing the ultimate tracking erronthddVe also establish
that, under limited control authority, this extension has the same correctoassntges as the
original algorithm as long as the input signals are bounded with a bouetive growth. Several
simulations illustrate our results. Our final step is the characterization of Wecypreservation
properties of the proposed dynamic average consensus algorithmengidar adversaries who aim
to retrieve information about the inputs, their average, or the state trajectdhiese adversaries
might be inside (internal) or outside (external) the network, do not ineerféth the algorithm
execution, and may have access to different levels of information, su&havledge of certain
parts of the graph topology, the algorithm design parameters, initial corglitiwrthe history of
communication messages. We show how the proposed algorithms naturabyvprése privacy
of the input of each agent against any adversary. Moreover, tablesh that the extension that
incorporates local first-order filters protects the privacy of the ages state trajectories against
any adversary by adding a common signal to the messages transmitted angittapree This

strategy also preserves the privacy of the final agreement valuesagaiarnal adversaries.

Organization. Section 2 introduces basic notation, graph-theoretic concepts, and the model of
time-varying networks. SectioBiformally introduces the dynamic consensus problems of interest.
Section4 presents our dynamic average consensus algorithm, establishes itstresse and
analyzes its properties regarding changing interaction topologies, téigore implementations,
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DYNAMIC AVERAGE CONSENSUS 5

and rate of convergence. Sectibrintroduces a modified version which enables agents to opt for
a slower rate of convergence and solves the consensus problem ieseaqe of bounded control
commands. Sectiof considers the privacy preservation properties of the proposeditalgsr
Section7 presents simulations illustrating our results. Finally, Sec8ayathers our conclusions

and ideas for future work.

2. PRELIMINARIES

In this section, we introduce basic notation, concepts from graph theed/throughout the paper,

and our model for networks with time-varying interaction topologies.

2.1. Notational conventions

The vectorl,, is the vector ofn ones,0,, is the vector ofn zeros, andl,, is the identity matrix
with dimensionn x n. We denote byA " the transpose of matriX. For a square matrid we
defineSym(A) = 1(A+ AT). We useDiag(A,,--- , Ay) to represent the block-diagonal matrix
constructed from matriced, ..., Ay. We defindI,, = I,, — %1,,1,] We denote the induced two-
norm of a real matrixA by ||A]|], i.e., ||A|| = omax(A), Whereo,.x is the maximum singular

value of A. The spectral radius of a square matrxis represented by(A). For a vectoru,

we use||u|| to denote the standard Euclidean norm, ile.| = vuTu. For vectorsuy, - -- ,uy,
we let (uy,--- ,uy) represent their aggregated vector. For a complex varigbidc) indicates

its real part. For a scalar variable the saturation function with limid < @ < oo is indicated by
satg(u), i.e.,satgz(u) = sign(u) min{|u|, @}. We letd; (¢) € O(d2(¢€)) denote the fact that there exist
positive constants andk such thatd; ()| < k|dz(e€)|, V |¢] < c. For network-related variables, the
local variables of each agent are distinguished by a superscriptugg.,jis the local dynamic
input of agenti. If p* € R is a local variable at agerit the aggregateg’s are represented by

p=(p',...,p") € RY. Our analysis involves linear systems of the form

z(t) = Ax(t) + Bu(t), Q)
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6 S.S.KIA, ET AL.

where statese(t) take values in the Euclidean spaf, and inputs are measurable locally
essentially bounded maps: [0, 0) — R™. Thezero-systenassociated tol] is by definition the
system with no inputs, i.ez; = Axz. We denote by|u|less the (essential) supremum norm | i.e.,

lu|less= sup{|ju(t)||, t > 0} < oo. Theconvergence ratef a stable linear systeth = Ax is
r =inf{x > 0|3k > 0 such that|z(¢)|| < x||z(0)||e ", ¢ > 0}. 2

Here, z(t) is the solution of the system when it starts from any initial statg) € R™. This
definition implies that for linear time-invariant dynamical system, the rate ofergewnce is the

least negative real part of the eigenvalues.

2.2. Graph theory

Here, we briefly review some basic concepts from graph theory and lalgebra, see e.g1}).

A directed graph or simply adigraph is a pairG = (V, &), whereV = {1,..., N} is thenode
setand £ CV x V is the edge setAn edge fromi to j, denoted by(i, j), means that agent
j can send information to agent For an edg€g(i,j) € £, i is called anin-neighborof j and

j is called anout-neighborof i. A digraphG’ = (V,&’) is a spanning subgraptof a digraph
G=W_¢&)if & c &. A graph isundirectedif (i,j) € £ anytime(j,i) € £. Given digraphgy; =
WV, &), 1€ {1,...,m}, defined on same node set, jbet digraph of these digraphs is the union
ur LG =W, & U&U---UEy). Adirected paths an ordered sequence of vertices such that any
ordered pair of vertices appearing consecutively is an edge of thaptigA directed treeis an
acyclic digraph with the following property: there exists a node, called tbg sach that any other
node of the digraph can be reached by one and only one directed patigsaaithe root. Adirected
spanning treef a digraph is a spanning subgraph that is a directed tree. A digraplteid songly
connectedf for every pair of vertices there is a directed path between them.dtramgly semi-
connectedf the existence of a directed path from any nade the digraph to any other node
implies the existence of a directed path from the npttenode:, as well.

A weighted digraphis a tripletg = (v, £,.A), where(V,€) is a digraph and4 € R¥*¥ is a
weighted adjacencymatrix with the property that;; > 0 if (¢,j) € £ and a;; = 0, otherwise.
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DYNAMIC AVERAGE CONSENSUS 7

We usel'(.A) to denote a digraph induced by a given adjacency matrid weighted digraph
is undirectedif a,; = a;; for all 4,5 € V. The weighted out-degreand weighted in-degre®f a
nodei, are respectively,¥i) = >2% | aj; and ¢(i) = 37 a;;. We let g, = ie{ryy}d“%i)
denote the maximum weighted out-degree. A digraptvégght-balancedf at each node < V,
the weighted out-degree and weighted in-degree coincide (although thay loeiglifferent across
different nodes). A necessary and sufficient condition for a digtapbe weight-balanced is for it
to be strongly semi-connected.

The out-degree matrifD°t is the diagonal matrix with entrieB°" = d°(;), for all i € V. The
(out-) Laplacianmatrix is L = D°"' — A. Note thatL1y = 0. A weighted digraplg is weight-
balanced if and only ifi, L = 0. Based on the structure df, at least one of the eigenvalues of
L is zero and the rest of them have nonnegative real parts. We denagémvalues of by \;,
ie{l,...,N}, wherex; = 0andR();) < R(});), fori < j. For a strongly connected digraph, zero
is a simple eigenvalue of. We denote the eigenvalues $fm(L) by \;, i € {1,...,N}. For a
strongly connected and weight-balanced digraph, zero is a simple eligei&ym(L). For such

a digraph, we order the eigenvaluesSpin(L) ash; =0 < Ay < A3 < -+ < An.

2.3. Time-varying interactions via switched systems

Here we introduce our model of networks with fixed number of agents buttangng interaction
topologies. Let(V,£(t),.A(t)) be a time-varying digraph, where the nonzero entries of the
adjacency matrix are uniformly lower and upper bounded @.g(t) € [a, a], where0 < a < g, if

(j,4) € £(t), anda;; = 0 otherwise). Our model of time-varying networks is thg) = I'(A, () ),
t>0,witho :[0,00) = P = {1,...,m} a piecewise constant signal belonging to some switching
setS. Here,m can be infinity. In our developments later, we provide precise specificatinrs.

By piecewise constant, we mean a signal that only has a finite number ohtlmdbes in any
finite time interval and that is constant between consecutive discontinuitiehéttering). Without
loss of generality, we assume that switching signals are continuous fronigttie The uniform
stability of switched linear systems with time-dependent switching signals (winéfarmity refers
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8 S.S.KIA, ET AL.

to the multiple solutions that can be obtained as the switching signal ranges swéching set) is

characterized by the following result.

Lemma 2.YAsymptotic stability of switched linear systems implies exponential stabili#]) [
For linear switched systems with trajectory-independent switching, unié@ymptotic stability is

equivalent to exponential stability.

We end this section by introducing the following notations. Given a time-vadigngph, we denote
by U;2G(t) the joint digraph in the time intervat,,t,) wheret; < ¢, < +oo. We say a time-
varying graphg(t) is jointly strongly connectedver the time-intervalt,, ¢5) if uﬁjg(t) is strongly
connected. The time instants at which the switching signaldiscontinuous are callesvitching
timesand are denoted by, ¢, t5, - - -, Wherety = 0. We useL,, to represent the out-Laplacian of

the digraph’'(A,).

3. PROBLEM STATEMENT

We consider a network d¥ agents with single-integrator dynamics given by
it=c, ie{l,...,N}, (3)

wherez? € R is theagreement statand¢’ € R is thedriving commandf agenti. The network
interaction topology is modeled by a weighted digrgplgenti € {1,..., N} has access to atime-

varying input signak‘ : [0, ) — R. The problem we are interested in solving is the following.

Problem 1(Dynamic average consensus)
Let G be strongly connected and weight-balanced. Design a distributed algaitbimthat each

agent’s state’’(t) asymptotically tracks the avera&;aZj.V:1 u (t) of the inputs. |

The algorithm design amounts to specifying a suitable driving comnaaridr each agent €
{1,..., N}. By distributed, we mean that agentnly interacts with its out-neighbors. In addition,
we also consider variations of the problem above that are intended to satiek practical issues
that arise in using the consensus algorithm in applications where the agentasrresponds to a
physical quantity such as position or velocity.

Copyright®© 201X John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Contr¢201X)
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DYNAMIC AVERAGE CONSENSUS 9

Problem 2(Dynamic average consensus with controllable rate of convergence)

Solve Probleni such that each agent converges at its own desired rate of congergen O

By giving a freedom to choose their desired rate of convergence llow agents with limited
control authority to opt for a slow rate of convergence. We can alsothecontrol over
individual rate of convergence of agents in scheduling different timemfals for them. This can
benefit applications such as payload delivery or arial surveillanceoédth reducing the rate of
convergence helps with cases that the control authority is limited but theoegisarantees that we

can avoid saturation. The next problem seeks a solution that providegsarantees.

Problem 3(Dynamic average consensus with limited control authority)

Solve Probleni under bounded driving commands, i#.= —satz (c¢!) foralli € {1,...,N}. O

Finally, we consider the problem of dynamic average consensus withcgrigreservation in
the presence of adversaries. We consider adversaries that dotedérm with the algorithm
implementation but seek to steal information about the inputs, their averate agreement state

trajectories of the individual agents.

Problem 4(Dynamic average consensus with privacy preservation)

Solve Problem4-3 such that the following privacy requirements are satisfied

(a) the local inputs of the agents should not be revealed or be recctitsiy any adversary;
(b) the agreement value should not be revealed to or be reconstrugtibktdonal adversaries;

(c) the agreement state should not be revealed to or be reconstructiuy byversary. |

For vector-valued inputs, one can apply the solution of Probleh each dimension.

4. DYNAMIC AVERAGE CONSENSUS

In this section, we introduce a distributed dynamic average consensu#thatgeovhich solves
Probleml with a steady-state error for arbitrary time-varying input signals. We &lew shat the
size of this error can be controlled using a design parameter and thgpefakclasses of inputs,

the steady-state error is zero.
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10 S.S.KIA, ET AL.

4.1. Fixed interaction topology

Here we assume that the interaction topology of the network is fixed. Wegede following

distributed algorithm as our solution for Problédm

N
it = —a(z’ —u') — 62 Lijjz? — o'+, (4a)
j=1
N
o' =aB Y Ll (4b)
j=1

fori e {1,...,N}. Here,z* € R andv’ € R are variables associated with agénflso, L is the
Laplacian of the digraply modeling the interaction topology. The constantss € R are design
parameters that can be used to tune the algorithm performance. In theirigllome study the

convergence and stability properties of this algorithm by using its equivadenpact form below

y=—oy - fLy —w, (5a)
w = afLy — (i + an). (5b)
where
1 N
yZ:IZ_NZ;u]’ i€{l,...,N}, (6a)
J1=
w=v—v, ©v=Iy(t+au). (6b)

Recall from SectiorB thatz? represents the agreement state of agefiherefore, with the change
of variables §a) we are transferring the desired equilibrium of the system, in agreeméa} &ta
zero. We start our study by analyzing the stability and convergenceiep of the zero-system

of (5), i.e.,

Y Y —aly —pL —Iy
=A , WhereA = . @)
w w afL 0
In the following we show that the dynamical system), (over a strongly connected and weight-

balanced digraph, is stable and convergent.

Lemma 4.Asymptotic convergence ofY)
Let G be strongly connected and weight-balanced.dsgt > 0, the trajectory of {) overg starting

Copyright®© 201X John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Contr¢201X)
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DYNAMIC AVERAGE CONSENSUS 11
from any initial conditiony(0), w(0) € RY satisfies,
a1 | X
v =~ leJ(O), w'(t) — Nzle(o), ast - oo, Yie{l,...,N}, (8)
J= J=
exponentially fast with rate of convergence upper boundeghiny ., SR (A2)}.

Proof

Consider the following change of variables,

y Iy 0 ;7 0
=TT, , Th = , Th = , Ts=|pr R, 9

q w aIN IN 0 T3
wherer = ﬁlN andRis suchthat "R =0andR™ R = Iy_;. We partition the new variables
asp = (p1,p2.n) andq = (q1, go.n), Wherep;, ¢; € R andpa.n, g2.y € RV~1. Using the change

of variables, the dynamicd) can be represented in the following equivalent form

D1 ~ | p1 ~ 0 -1
—Al'l, A= , (10a)
a1 | @ 0 —a
P2:N _ | P2:N _ —BRTLR —1In_4
—a . A= : (10b)
qQ:N_ _q2:N L 0 *OKIN_l

The eigenvalues oft are0 and —a. The eigenvalues of the matrid are —a, with multiplicity
N —1, and —g8\;, with i € {2,..., N}. Recall that)\;'s are eigenvalues oL. For a strongly
connected digraphy; = 0 and the rest of the eigenvalues have positive real parts. Theré&ore,
a, 8 > 0, the dynamical systeni()), and equivalently®), is a stable linear system.

The null-space of the system matuikis spanned byl y, —aly), the eigenvector associated with

zero eigenvalue. Therefore))(converges exponentially fast to the set

{(y,w)|y =ply, w=—poly, peR} (11)

Left multiplying both sides of{) by Diag(0x ", 15 ") and invoking the weight-balanced property

of the digraph, we obtaily_\* , « = 0, and therefore,

N N
D wit)=> wi(0), Vt>0. (12)
i=1 i=1

Copyright®© 201X John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Contr¢201X)
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12 S.S.KIA, ET AL.

The combination of{1) and (L2) yields that, from initial conditiony(0), w(0) € R¥, the trajectory
of the dynamical systenv) satisfies §), exponentially fast. Based og)( the rate of convergence

ismin{«, SR(A2)}. O

The next result further probes into the properties of the dynamicalmy@eby upper bounding
the difference between the stateof agent; at any timet and the equilibrium value. This bound is

instrumental later in the characterization of the steady-state errdy.of (

Lemma 4.4Upper bound on trajectories of)]

Under the assumptions of Lemmiél, the following bound holds for eache {1,..., N},

< Hy(t) + a_lrrTw(O)H < s(t),

. a_l N .
v+ 5 Y w0

where
s(t) = (e~ + e~ Phat) y(o)H+a—1e—at w(O)H
[rmarcscmn ol o). wes
teBat (aHy(O)H v Hw(O)H) , if o — 8.
Proof

The solution of the state equationl0j from initial condition y(0),w(0) € RY is

(P1(t), 1 (t), P2:n (1), g2:n () = () (p1(0), ¢1(0), p2:n(0), g2:n(0)), Where

1 a (e —1) 0 0

0 et 0 0

0 0 ®(t,0) — [ ®(t,7)e T dr
0 0 0 e In_q

and®(t,7) = e"ARTLR(t=7) Now, from [L9, Fact 11.15.7, item xvii], we deduce

H(}(taT)H — H e—ﬁRTLR(t—T) ’ < e—ﬂsz(t—'r)’ (15)
and hence
t t .
H / B(t,r)e 07 dTH < / o~ Fhalt=m) g=ar g (16)
0 0
Copyright®© 201X John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Contr¢201X)
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DYNAMIC AVERAGE CONSENSUS 13

Now, using the change of variable®,(one has

where
t
Sii=e “rr’ + R®(t,00R" — aR( / ®(t,7)e “Tdr)R', (18a)
0
t
Sip=(—at+aterrT — R(/ ®(t,7)e T dr)R'. (18b)
0
The result now follows from usinglf) and (L6) to bound the expressioi ). O

Next, using the results guaranteed by Lemfrizwe study the convergence and stability properties
of our proposed dynamic average consensus algorithrnve start by establishing an upper bound

on its tracking error for any given initial condition.

Theorem 4.1Upper bound on the tracking error af)f
Let G be strongly connected and weight-balanced. Each agent has a praswisnuously
differentiable inputu’(t). For o, 8 > 0, the trajectory of the algorithm4) over G starting from

any initial conditionz(0), v(0) € R¥ satisfies, for alf € {1,..., N},

<s(t) + /0 PR ]HNu(T)HdTJr (19)

(Bha = o) Lot —em et [a(0)]|, if a Bl

te=Biat {l4(0), if a =B,

wheres(t) is defined in {3), andy andw are defined ing).

Proof
Recall that using the change of variables definedéinwe can represent] in the equivalent
compact form §). Using the change of the variable8) (ve can representy in the following

Copyright®© 201X John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Contr¢201X)
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14 S.S.KIA, ET AL.
equivalent form
D1 ~|m
=A , (20a)
| an
pQ:N __ | P2:N 0
=A — (i + o), (20Db)
| Go: N q2:N RT

where A and A are defined in 10). For any given initial conditions, the solution of the state

equation 20) is

| o || 0
q1(t) _am 71(0) 3 0
p2:N(t) pQ:N(O) fot (I’(ta T) e *Tdr (q2:N( +RT

| q2:n (1) | N 0)] |

—RT4(0) + RTu(t)

&(t, )R u(r)dr

=)y ®

whereQ(t) is defined in {4). Recalling the change of variable3 (we have

y(t) = Suy(O) + 512’11)(0) —

where S1; and S, are defined in 18). Note that 6b) implies thatzl.[\i1 w'(0) =

t
R/ ®(t,7)e " dr RT (0
0

)+R/Ot<1>(t,T)RTu(T)dT, (21)

S, vi(0).

Notice also thatR™ = R"I1y, andHRH = HRTH = omax(R) = 1. Then, by recalling15), it is

straightforward to show thai ) is satisfied.

O

The next result shows that, for input signals whose orthogonal gimjeinto the agreement space

are essentially bounded, the algorithfi) $olves Problem with a bounded steady-state error.

Corollary 4.1(The algorithm §) solves Problem)

Let G be strongly connected and weight-balanced. Assume that the dervafitee inputs of

the network satisfy|II yu|less= v < co. Then, for anyx > 0 andg > 0 the algorithm 4§) overG

initialized atz*(0) € R andv’(0) € R such thaty>Y , v*(0) = 0 solves Probleni with an upper-

bounded steady-state error. Specifically,

lim sup |z
t—o00

2)" 7,

2 \
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Proof
In Theorem4.1, for a strongly connected and weight-balanced digraph, we showédhba

trajectories of the algorithm4j, for any z¢(0),v*(0) € R, i € {1,..., N}, satisfy the bound1(9).

t
/ e*ﬁ/\g(ﬁ*‘l’)
0

Then we can easily deduce?) from (19). O

Notice that

‘nNu(T)HdT < (Bha) "M (1 — e~ Bretyy,

Remark 4.XEffect of faulty initial conditions)

The conditionZﬁilvi(O) =0 of Corollary 4.1 can be easily satisfied if each agent starts at
v?(0) = 0. This is a mild requirement becauséis an internal state for agentand therefore it

is not affected by imperfect communication errors. Additionally, for largeworks, if we assume

that the initialization error is zero-mean Gaussian noise, we can expeGtv’ (0) = 0. ]

Remark 4.Tuning the performance ofl via design parameters)

Corollary4.1suggests that to reduce the nonzero steady-state error, one cameithase the graph
connectivity (largen\,) or use a larger value gf. The parameter can also be exploited to regulate
the algorithm performance. The bounBf suggests that the rate of convergence of the transient
behavior is governed byin{c, 65\2}. If one is forced to use Iarg,éS\g to reduce the steady-state

error, them can fulfill the role of regulating the rate of convergence of the algorithm. O

Remark 4.3Comparison with input requirements of the solutions in the literature)

In order to guarantee bounded steady-state error tracking of the awpuhge, the solution we
offer for Problem1 through Corollary4.1 only requires that the projection of the network’s
aggregated input derivative vector into the agreement space is lhufttie is more general than

the requirements in the literature, which generally ask for bounded ingidrmounded derivatives

(e.g., @, 15, 17)). ]

In the following, we identify conditions involving the inputs and their derivagivinder which the

algorithm @) solves Probleni with zero steady-state error.

Copyright®© 201X John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Contr¢201X)
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16 S.S.KIA, ET AL.

Lemma 4.3Conditions on inputs for zero steady-state errord)f (
Let G be strongly connected and weight-balanced. Assume there exist8 such that, for all

i €{1,..., N}, one of the following conditions are satisfied

(@) 4i(t) + au’(t) converges to a common functidft) ast — oc;

(b) i’ (¢) + axi(t) converges to a common functiéft) ast — oo.

Then, the algorithmd) overg with the givena, z7(0) € R, andv’(0) € Rsuchthab N | +i(0) =0,

foranys > 0, makesr’(t) — + Z;V:l u’(t) ast — oo, foralli € {1,...,N}.

Proof

Using the change of variable8d) we can represent) in the following equivalent compact form

y=—ay— Ly —v+IIy(t+ au), (23a)

® = afLy. (23b)

When condition (a) holds we haddy (u + au) — 0, ast — oo. Notice that 23), the equivalent
representation of4), is a linear system with a vanishing inplly (% + au). Therefore, it
converges to the equilibrium of its zero-system. In light of Lemé& we conclude that
yi(t) — —(’% Z;V:l v7(0) asymptotically for alli € {1,..., N}. However, due to initialization
requirement we havd " | v/(0) = 0. As a resultz’(t) — & Zjvzl u’ (t) globally asymptotically
forie{l,...,N}.

When condition (b) holds we havBIy (i + atw) — 0, ast — oo. Recall §) the equivalent
representation of4). It is a linear system with a vanishing inpliiy (% + cu). Then, using

a similar argument used fo2g) above, we can show that ib)( y'(t) — —‘X; Zévzle(o)

asymptotically for alli € {1,...,N}. Using @b), we can showy Y wi(0) = =N, +i(0). As a

resultz’(t) — + Z;.V:l v’ (t) globally asymptotically foi € {1,..., N}. O

Remark 4.4Inputs that satisfy the conditions of Lemri&)
The classes of inputs in Lemmda3 depend on a parameterwhich must be known by each agent
in order to obtain zero steady-state error. Classes of inputs that sagsfpiditions regardless of

Copyright®© 201X John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Contr¢201X)
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DYNAMIC AVERAGE CONSENSUS 17

the value ofa, such as static inputs and dynamic inputs which differ from one anothetabig s
values. For these classes of inpdiy (4 + aw) = 0, and the convergence is exponential with rate

min{«, SR(A2)}. O

4.2. Time-varying interaction topologies

In this section, we analyze the stability and convergence properties ofyi@mic average
consensus algorithmi) over networks with changing interaction topology. Changes can be due
to unreliable transmission, limited communication/sensing range, or obstacle$’, l&€t), A(t))

be a time-varying digraph, where the nonzero entries of the adjacenax muaruniformly lower

and upper bounded (i.ex,;(t) € [a,a], where0 < a < a, if (j,7) € £(t), anda;; = 0 otherwise).
Intuitively one can expect that consensus in switching networks will oédhere is occasional
enough flow of information from every node in the network to every otloelen Then, according

to Section2.3, in order to describe our switching network model, we start by specifyiagéh of

admissible switching signals.

Definition 1(Admissibleswitching setS,qmis)
An admissible switching s&f,amis IS a set of piecewise constant switching signald0, oo) — P

with some dwell timep (i.e.,tx 1 —tx >t > 0,forallk =0,1,...) such that

o the induced digraph (A, ;)) is weight-balanced for > ¢,;
e the number of contiguous, nonempty, uniformly bounded time-interftalst; . ), j =
1,2,..., starting att;, = to, with the property thaUZi“F(AU(t)) is a jointly strongly

connected digraph goes to infinity &s» oc. O

Our model of network with switching topology is théX.A4,, ), with o € S.amis- The algorithm 4),

after applying the change of variables,(is represented in compact form as follows

Y (] 0 —aly — Ly —INn
— Ao’(t) — s Ao‘(t) = . (24)
w w Iy (i + o) aB L,y 0.
Copyright®© 201X John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Contr¢201X)
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18 S.S.KIA, ET AL.

Similarly to our analysis of the algorithm over fixed interaction topologies, w Isyaexamining
the zero-system of{), i.e.,
Y Y
= A, (25)
w w
The following result analyzes the convergence and stability propertidseadwitched dynamical

system 25) when the switching signal € S, quis.

Lemma 4.4Asymptotic convergence o£[))
Leto € S.amis and consideg(t) = I'(A, () for ¢ > 0. Then, for any, 5 > 0, the trajectory of the

algorithm @5) starting from any initial conditiony(0), w(0) € R satisfies §), exponentially fast.

Proof

Using the change of the variable® (we can represengf) in the following equivalent form

41 ~ |P1 ~ 0 -1

Q1 a1 0 —«o

D2:N _ D2:N _ —BR"L,yR —In_,
= A, y Asy =

| G2:n qa:N 0 —aly_y

We can writep as follows

p=-T,L,T5p—q. (26)

We can look at this dynamical equation as a linear system with ippuitich vanishes exponentially
fast (notice thaj = —aq). Next, we examine the stability of zero-system &6)( Under the state

transformation = T3p, this zero-system can be represented in the following equivalent form
".7 = _LUT]' (27)

According to P, Theorem 2.33], when the switching sigaal such that the number of contiguous,
nonempty, uniformly bounded time-intervals, , ¢;,,), j = 1,2, ..., starting att;, = t,, with the
property thatUZj“F(AU(t)) has a spanning tree, thef7j asymptotically achieves consensus.
Invoking this result, we can conclude that fere S.qmis, the trajectories of 47) converge
asymptotically to- Z;VZ 1 1;(0) wheren;(0) is theith element ofp(0). For zero-system of20),

Copyright®© 201X John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Contr¢201X)

Prepared usingncauth.cls DOI: 10.1002/rnc



DYNAMIC AVERAGE CONSENSUS 19

this is equivalent t@; (t) — p1(0) andpa.x () — 0 uniformly asymptotically for alb € S,amis-

The switching signhat € S.amis IS a trajectory-independent (it is time-dependent) switching signal.
Then, Lemma2.1 implies that the convergence of the zero systemasi (s indeed globally
uniformly exponentially fast. Using input-to-state stability results (s&& P1]), then we can
conclude that in46), p1 (t) — p1(0) andpq.x () — 0 ast — oo uniformly globally exponentially.

Recall the change of variabl8)( then it is easy to show that fo2%) we also have§). O

Obtaining an explicit value for the rate of convergence ) (for all possiblec € Saamis IS
not straightforward. However, we can show that the rate of conmesgés upper bounded by
max (R(Ap2)), where ), is the eigenvalue oL, with smallest nonzero real part. The following
pe

result relates the upper bound on the difference between the/statef agenti at any timet and

the final agreement value to the rate of convergencg)of (

Lemma 4.5Upper bound on trajectories dt¥))

Under the assumptions of Lemmi&}, the following bound holds for eache {1,--- , N},

yi(t) + ‘%l iwi(m < HyT(t) n a_lrrTwT(O)H < 3(b), (28)

wheres(t) is the same as(t) in (13) only \, is replaced by\, > 0 where),, satisfies

H e*ﬂRTLa(t)R(t*to)

( < we Pralt=to) > ¢ >0, (29)
for some finited < «.

Proof

We follow the same steps of the proof of Lema. The only difference is that the norm bouridb)(

of the transition matrix op.. y state equation has to be modified, as explained below. We showed in
the proof of Lemmat.5that whero € S,amis for all t > g, the zero-system oRg) is exponentially

stable. Therefore, there exist posit'&e andx such that

H@(t, to) = e_BRTLg(t)R(t—tO)

‘ < e Pre=t0) > 4> 0.

As aresult, in the case of switched dynamical systemd,anX. is replaced by\,. Then, from (.7)
we can deduce the boun#g). O
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In light of Lemma4.5, the extension of the results on the stability analysis and ultimate convergence
error bound of the algorithm4} over fixed interaction topologies to switching networks whose
switching signalo € Sagmis is straightforward. For such switching networks, Theorérh and
Corollary 4.1 are valid, with the only change of replacimg\, by )., cf. (29), in the statement.
Because of Lemma4.4, the proof that Lemmad.3 applies to switched networks withe€ SagmisiS

straightforward. For the sake of brevity the detailed statements and pn@ofenitted.

4.3. Discrete-time implementation over fixed interaction topologies

In this section, we offer the following discrete-time algorithm as an iterativeanyc consensus

algorithm that solves Problefinagain with a non-zero steady-state error

N
2k +1) =2 (k) — oz’ (k) — 68 Y _ Lij (' (k) + v/ (k) — 6v* (), (30a)
j=1
N
vik+1) =v'(k) + 608y Lij( (k) + (k) (30b)
j=1
z'(k) = 2" (k) + u'(k), (30c)

fori e {1,...,N}. Hered > 0 is the stepsize. Using30¢) to obtainz(k) = z(k) — u’(k), and

substituting this in§0g and G0b), we obtain

N

' (k+1) = 2% (k) — Sa(z' (k) — u'(k)) — 68 Z Lz (k) — 6v' (k) + Au'(k), (31a)
N "

vi(k+1) =v' (k) + 608 Y  Lija’ (k), (31b)

where Au’(k) = u'(k + 1) — u*(k). Notice that the discrete-time algorithri(j is an equivalent
iterative form of @) obtained by Euler discretization with stepsizé/Vhend — 0, we can expect
that the stability and convergence properties 2ff) (are similar to that of4), i.e., 2 tracks the
average of the network inputs in it8(3~!) neighborhood, provided the network topology is
strongly connected and weight-balanced digraph.

Next, we explore the bounds on stepsizeuch that the discrete-time algorith@0f is convergent
and tracks the input average. In the following, we u38 (vhich is an equivalent representation
of (30). Before proceeding with the analysis, some comments are in order irggahe choice
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of (30) as the iterative implementation af)( First, this structure allows us to circumvent discretizing
the derivative of the input signals and, as a result, avoid the one-stapedetracking reported

in [17]. Next, note that ag’ is never communicated directly, the privacy of the agents in regards to
not to revealing their local inputs is preserved (for more discussionivagyrsee Sectiof).

We start our analysis by studying the stability and convergence propeftibg zero-system of

discrete-time algorithm3(1), mainly to characterize the allowable stepsize range.

Lemma 4.§Convergence analysis and stepsize characterization of the zé¢eorsyk31))
Let G be strongly connected and weight-balanced. &a8 > 0, the trajectory of the zero-system
of discrete-time algorithm3() overg starting from any initial conditior:(0), v(0) € R satisfies

) a~ ! ) . 1 N .
i LNy i =3 e {1,...,N
(k) — N i:1v(0)7 v(k)—>Nj:1v(O), Vie{l,...,N},

asymptotically, ag — oo, provideds € (0, min{a !, =1 (d% )~1}).

max

Proof

We can represent the zero-system of discrete-time algorisijvir( the following compact form

z(k+1) (k)
= P; , Ps=1IN+0A. (32)
v(k+1) v(k)

whereA is given in (7). Then,

In the proof of Lemma4.1 we showed that the eigenvalues df are —a with multiplicity
of N and —p); for i € {1,...,N}. Then, the eigenvalues dP; are 1 — ja with multiplicity

of N and 1-§5)\;, wherei e {1,...,N}. Note that the eigenvalues dfy — §5L are 1 —
0BX\;. Invoking [8, Lemma 3], for a strongly connected and weight-balanced digraph, wken
(0,min{a~t, B=1(d?™ )~1}), the eigenvalues — 68\, i = 2,..., N, are strictly inside the unit
circle in the complex plane. Note that foe= 1, 1 — §8); = 1. Therefore, we conclude that when
§ € (0,min{a~", 3~1(d®™ )~11), for a strongly connected and weight-balanced digrBphas an

eigenvalue equal tb and the rest of the eigenvalues are located inside the unit circle. ThesrEfo
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is a semi-convergent matrix, i.éimy_ o Pé’“ exists. Therefore

x(k+1) x(k)
— — 0, ask — oo.

v(k+1) v(k)

Then,
x(k+1) B (k) — P; = (k) - =(k) =J0A =(k) =0, ask —
ok 4+ 1) w(k) (k) v(k) v(k)
As aresult,
. x(k) 1n
i B VN R (33)
¢ v(k) —aly

For a weight-balanced digraph, left multiplying the state equatiorwdfy 17, we obtain
SN vk +1) = SN vi(k). Consequentlyy N | vi(k) = S vi(0), ¥ k. Invoking (33), then

atk = oo we have—Npua = Y2 v7(0). Asaresulty = —2 = S vi(0). O

The following result establishes an upper bound on the solutions of thethlgd30) for any given

initial conditions. In the following, we le®(k,j) = (Ix_; — 63RT LR)*~7

Theorem 4.ZUpper bound on the tracking error &1))
Let G be strongly connected and weight-balanced. Each agent has anityputFor o, 3 > 0, the

trajectory of the algorithm30) overg starting from any initial conditior(0), v(0) € R¥ satisfies,

1N = N -
% Zuj(k) + N&Z(l —da)’ ZU](O) < Hy(t) + 52(1 —da)rr w(O)H <
j=1 =0 =1 =0
k— k
(1- aéi(l _sa)) Hy(O)H + H<I>(k,0)HHy(O)H +aH i@ —1,4)(1 = Sa) H+
j=0 j=0
| (ki Bk~ 1,5)(1 = ) |w )| + | ki Bk —1,5)(1 - a)’ | | Au(o) |+
=0 =
| RS ®(k—1,5)RT Au(j)|, (34)
§=0
foralli € {1,..., N}, wherey is defined in 68 andw is
w=v—0, ¥=Iy(Au(k)+ dau(k)). (35)
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Proof
Consider the change of variables introduced @a),( (35 and ©). Then 1), the equivalent

representation of30), can be expressed in the following equivalent form

40| - [mk)
= Ps ’
(a1(k+1) q1(k)
_p2:N(k +1) _ | pa.n(k) 0
= P;s - (Au(k + 1) — Au(k) + daAu(k)),
|a2:n(k+1) q2:n (k) RT

wherePs = I, + A andPs = Iy_, + 6 A, with A and A are defined in10). For any given initial

conditions, the solution of this difference equation is

k—1

pr(k) =p1(0) = Y (1= da)’q:(0),

Jj=0

a1(k) =(1 - 6a)*q1(0),

pan (k) =@(k,0)p2in (0) — ) ®(k — 1,j)(1 — 6)’ (g2:n(0) + RT Au(0))+

e
—

~
|
-
<
I
=]

®(k—1,5)R" Au(j),

<
Il
o

oo () =(1 = 60)" (g (0) + BT Au(0)) — RT Au(k).

Recalling the change of variable®) (we have

k—1
y(k) =D11y(0) + D1ow(0) — R ®(k —1,5)(1 — da)’ R Au(0)+
§=0
k—1
j=0
where
k—1 k—1
Dy =(1-ad) (1-da))rr’ + R®(k,0)R" — aR(Y_®(k—1,5)(1-da) )R,
Jj=0 j=0
k—1 k—1
Dy =—6) (1-6a)rr’ =R _®(k—1,5)(1—da))R".
=0 j=0

Because1y 'IIy =0, from (35 we can deduced N w'(0) = SN +(0). Then, it is
straightforward to obtain34). O
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The following result shows that for networks with strongly connectedvegidht-balanced digraph
topologies, the discrete-time algorithrB0f solves Probleni with a nonzero steady-state error,
provideds € (0, min{a~", ~1(d?™ )~'}), the algorithm is initialized properly and the essential

max

norm of the projection of the input difference vector into the agreemexttesis bounded.

Corollary 4.2(The algorithm 80) solves Probleni)

Let G be strongly connected and weight-balanced. Assume that the differehtiee inputs of the
network satisfyf|TIy Au|less= v < oo. Then, for anyy, 8 > 0, the algorithm 80) overg initialized
atz(0) € R andv'(0) € R such thatzij\i1 v*(0) = 0 solves Probleni (in the outputz?) with an

upper-bounded steady-state error. Specifically; tor{1, ..., N}

lim < (68X\) 7,

k—oc0

, 1L
o'(k) — & Zuj(k)

provideds € (0, min{a~!, =1 (d%E )~1}).

max

Proof

We showed in Theoremd.2 that, for any given stepsize, the boung4) on the outputz’ of
algorithm @0) holds. In the following, for the stepsizes satisfying (0, min{a !, ~1(d™, )~1}),
we find the limiting value of the terms of this bound when- co. Notice that0 < § < a1,
then 0 < (1 — ad) < 1. As a result, wherk — co we haver;é(l —da)’ = (6a)~t, leading

to (1—aé Zf;é(l —6a)’) = 0 ask — oo. Recall ®(k,j) = (Ix_; — 3R LR)*~7. Because

0<d< B (dM™

max

)~1, the spectral radius of¢(1,0) is less than one, therefor@(k,0) — 0
and Z?;S ®(k—1,7) = (S RTLR)~! ask — oo (see [L9, Fact 10.3.1.xiii]). Also, there exists
w € (0,1) such thatp(®(1,0)) < w < 1. Then3 > 0 such thatH@(k _ 1,j)H < pwh=1-7 for

0<j<k-—1,[22 pp. 26]. As a result, we have

H kz_:lq)(k - L) - 6a)jH < ukz_:lwk’—l_j(l Y
=0 2

Notice that
k-1 k—1 1— Sor k-1 w
k—1—j j_ k=1 — Jj_ k—1 J
w 1-da) = =(1-da .
DI =) =AY = (1) Y ()
j=0 Jj=0 Jj=0
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Then, as — oo we have

wk=1(1-122) 0, w>1-da,

k—1 k—1
| > - 1,060y | <pY w7 (1-00) =3 (p_1yr-10, w—1-sa,
=0 =0

(1=6a)* 11— 4-)=0, w<l-—da.

Invoking [19, Fact 8.18.12], we have
|(RTLR)™ || = cnax (RTLR) ™) < s (BT Sym(L)R)™") = 4™

Also, notice thatvk > 0, we haveHRTAu(k)H - HRTHNAu(k)H < HRTHHHNAu(k)H <.

Using the limiting values above, we can conclude that
k—1 k—1 )
| > @t- 1R au)|| <o|| Yo @k - 1.5)|| =o||@sRTLR) | < 5 /(0850).
J=0 3=0
This completes the proof. O

One can make similar comments to those of Rendafleegarding the tuning of the performance
of (30) via the design parameteassand. In the following, we identify conditions, involving inputs

and their differences, under which the algorith®g)(solves Problem with zero steady-state error.

Lemma 4.{Conditions on inputs for zero steady-state error3a))
Let G be strongly connected and weight-balanced. Assume there exdsts
(0, min{a~1, 3~1(d® )~1}) and o > 0 such that for alli € {1,..., N}, one of the following

max

conditions are satisfied

(@) Aui(k) + daui(k) converges to a common dynamics);

(b) Aul(k+1) — Au'(k) + daAu’(k) converges to a common dynamics).

Then, the algorithm 30) over G with the givend and a, 2¢(0) € R, and+*(0) € R such that

S, vi(0) =0, for any3 > 0, makesr' (k) — & Y1, u? (k), ask — oo, foralli € {1,..., N}.

Proof
Recall the change of variabléd), then an equivalent representation &f)can be stated as follows
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(compact form)

y(k+1) y(k) Iy (Au(k) 4+ adu(k))
= Ps + , (36)

v(k+1) v(k) 0
where P; is defined in 82). When condition (a) holds we haddy (Au(k) + dau(k)) — 0, as
k — oo. Then @6) is a linear system with a vanishing inplity (Au(k) + dau(k)). Therefore, it
converges to the equilibrium of its zero-system. Notice that the system maafi¢gs) and G1)
are the same. Therefore, whér (0, min{a~!, 3~1(d°® )~'}), we can use result of Lemma6
to conclude thay' (k) — — 2~ Y-~ v#(0), fori € {1,..., N}. Becaus& ", v*(0) = 0, then we
havez'(t) — + Z;,V:l u’ (k) globally asymptotically fot € {1,..., N}. Next, notice that using the

change of variable$5g) and @5) another equivalent representation 80) can be stated as follows

(compact representation)

v | e 0 -

w(k+1) w(k) IIy(Au(k + 1) — Au(k) + daAu(k))
where Ps again is defined in32). When condition (b) holds we hau@y (Au(k) + dau(k)) — 0
as k — co. Then, @7) is a linear system with a vanishing inplIy(Au(k + 1) — Au(k) +
daAu(k)). Then, using a similar argument used f&@6) above, we can show that irB7)

-1

yi(k) — —2~ SN wi(0) ask — oo fori € {1,...,N}. Using @5), we can showp Y, w'(0) =

Zf.vzl v'(0). As aresultr’ (k) — + Z;VZI u’ (k) globally asymptotically for € {1,..., N}. O

5. DYNAMIC AVERAGE CONSENSUS WITH CONTROLLABLE RATE OF

CONVERGENCE AND LIMITED CONTROL AUTHORITY

In this section, we address the dynamic average consensus Prdblents3. As discussed in
Section3, the goal in setting up these problems is to come up with an algorithm which is more
suitable for applications where the agreement stata (3) corresponds to some physical variable
such as position of a robotic system. In such networked systems, agentshanwgHimited control
authority and can not implement the high-rate commands dictated by the cossdgarithm.
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Although the rate of convergence of the algorithm can be controlled byhihieeof« and g, these
variables are centralized variables and the effect is universalsttr@setwork. One can expect that
a more efficient consensus algorithm is one that allows agents with limited powesve at their

own pace. To this end, we make a modification to the structure of the cossalgsuithm {),

N
3= —a(z' —u) - ﬁz Lzl — o' + 4, (38a)
j=1
N
i =apy Ly, (38b)
j=1
N
i =—0'(t)(a' = ") —a(z' —u') = B Lyt —o' 4, (38c)
j=1

where ¢’ : [0,00) — R is a time-varying gain which is bounded from below and above, i.e., at
all t >0 we have0 < ' < 0 (t) < 0, fori e {1,...,N}. As we show below, agents that wish
to slow down their rate of convergence use this gain to adjust it. Note thadiagcstructure of
the algorithm. As such, the stability properties 88§-(38b) (information phasgare independent

of (380 and are as characterized in SectibriThe information phase allows agents to obtain the
average with a convergence rate that is common across the networkyidaids 88¢) (motion
phas@ allows each agernte {1,..., N} to tweak its convergence rate by adjusting the gaiiwe
start our analysis by examining the rate of convergence of the algori@Bpafd establishing an

upper bound on its tracking error.

Lemma 5.{The algorithm 88) solves Problen?)

Let G be strongly connected and weight-balanced. For inputs whose degivatitisty| Iy t||ess=
v < oo, foranya > 0 andg > 0 the algorithm 88) initialized atz?(0) € R andv?(0) € R such that
Zf.\’:l v*(0) = 0, then we have the same ultimate tracking error boun@#®f (The rate of decay of

the transient responseﬂﬁn{gi, a, BXQ} for each agente {1,...,N}.

Proof
Consider the information phas&dg-(38b). From Theoremt.1 and Corollary4.1, follows that
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2t -+ ZJ L u?(t) has the ultimate bound

_7ZUJ

and converges to this neighborhood of the input average with a raiegfy, 3, }. Next, consider

lim sup |z
t—o0

< (BA2) ', (39)

the motion phase3g8c), which can be written as
it =0 (t)(z" — )+ 2 ie{l,...,N},Vt>0.
With the change of variablet = 2 — 2%, i € {1,..., N}, this can be equivalently written as
di=—0'(t)d', ie{l,...,N}, Vt>0. (40)

Using the Lyapunov functio? = 1(d)2, it is not difficult to show that, foi0 < ¢’ < ¢(¢) <

6%, (40) is an exponentially stable system which satisfies the following bound
|27(t) — 2 (6)] = |d*(t)| < [27(0) — 2 (0)| e 2, i€ {l,...,N}, Vt>0.
Therefore,

LN
—NZu](t) < |z'( ——Zuj
j=1

As such, we conclude that2%) is satisfied. The rate of convergence of agentis

0) — 2" (0)] e 2" + , ie{l,...,N}, Vt>0.

min{#’, a, Bz} O

As before, the design parametersand 5 can be used to tune the overall rate of convergence.
Agents who wish to move at a slower pace can use the motion phas@'witimin{a, 3\,} to
accomplish their goal. The time-varying naturedéfallows for agents to accelerate and decelerate
the convergence as desired. Notice that the ultimate error bound gutdnytalgorithm 88) is

the same as the one for algorithd).(Therefore, the local first-order filteB8c) adjusts the rate of

convergence without having any adverse effect on the error bound

Remark 5.Discrete-time implementation and switching networks)
The results above can be extended to switching networks and discreteetitimgss For brevity

this extension is omitted. In the discrete-time implementation, it is straightforwarato tstat for

convergence we should requites (0, min{f~!, o, 371 (d® )~1}), whered = _ pmax }{91} O
e{l,....N
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Next, we consider the case when saturation is present in the driving camniffamfollowing result
states that, under suitable conditions, the algorit&6) is a solution for Problen3 with the same

error bounds as if no saturation was present.

Lemma 5.4The algorithm 88) solves Problen3)

Let G be strongly connected and weight-balanced. Suppose the driving caimehaach agent
i€ {1,...,N}isbounded by > 0,i.e.,i’ = —sat (c'). Assume for every agentc {1,..., N},
the following holds: (a) the input signal at each agent is such ﬁ@:f:l w is bounded, the
input derivatives satisiJTI ytt||ess= 7 < o0, and||u!||ess= p* < oo; (b) & > u’ + ~. Then, for any
a, 3> 0, and constant’ > 0, the algorithm 88) starting from any:¢(0) € R andv?(0) € R such

thatZZN=1 v*(0) = 0 satisfies that the ultimate tracking error bougd)(

Proof

Consider the information phase of the algorithm, i.8384 and @8b). Following the proof of
Lemmab.1for the information phase, we havéd). To complete the proof, we will show that under
the given conditions for the input signals, despite the saturatibr; 2* asymptotically for all

i € {1,..., N}. Under the saturation constrain3gg) takes the formi’ = — sat: (6 (2" — 2%) + 2),
for i € {1,..., N}. The rest of the proof relays on Propositiér2. According to this result, we
need to show that &’ is a bounded signal; b)i(¢)| < & for all t > t* wheret* is some finite
time. For any given finite initial conditions and input signals with boundedamesthe requirement
(a) is satisfied due to convergence guarantee8&4d){(38h). In the following, we show that the
requirement (b) is also satisfied due to the given assumptions. With ch&ngeables 6b) and

y=z-+ Z?’:l /1, we can represen8g8g as follows
1 N
s . o - .j
z=—ay— Ly w+NZu 1y.
Jj=1
Therefore, for ali € {1,..., N},

, . A 1L
lim |zl(t)’ < lim |—ay'(t) — w'(t) + N Ziﬂ (1)

t—o0 T t—oo

+ Jim ||8Ly (1)
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Using the results and the variables introduced in the proof of Thedr&nwve can show that

N
1 B y(0) . , .
—ay—w+NZuJ1N:—{aSu_~_521 a512+522] —e “* RR"4(0) + u(t),
j=1 w(0)

whereS;; andS;, are given in {8), and we have
t
So1 = —aR®(t,0) + OZQR(/ ®(t,7)e " dr)R" + aRR" e=*,
0
t
Sy =rr' +aR( / ®(t,7)e " dr)R" + RR" e~ . (41)
0
Recall that®(t, ) = e AR LR(=7) then,
t t
ﬁLR/ B(t, T)RTu(T)dTH - HBRRTLR/ @(t,T)RTa(T)dTH -
0 0
t
Re PRLR: / BRTLRePR LR RTHNu(T)drH <
0

t
Re PRTLRS / BRTLRe’R LR dT||HNu||eS4
0

< ||HNu||ess+ e_ﬁbt ||HN11||ess

T T .
Re—ﬂR LRt(eﬁR LRt _IN)HHNuHeSS‘

Recall 1). In light of the relations above we can show that

lm [£'(t)] < p'+7v, i€{l,...,N}

t—o0

Therefore, there exists a finite timesuch thatzi(¢)| < ¢t forallt > t* andi € {1,...,N}. O

6. DYNAMIC AVERAGE CONSENSUS WITH PRIVACY PRESERVATION

Here, we study the dynamic average consensus problem with privasgrgation. We consider
adversaries that do not interfere with the implementation of the algorithm buintarested in
retrieving information about the inputs, their average, or the agreemeattstfectories of the
individual agents. These adversaries mighirtbernal, i.e., part of the network, axternal Internal
adversaries have access at no cost to certain information that exaelvexsaries do not. More
specifically, an internal adversary has knowledge of the parametetof the algorithm 4), its
corresponding row in the Laplacian matrix, and the agreement state of itemitbors. We also
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assume that the agent is aware of whether the algorithm is initialized ith= 0. We refer to the
extreme case when an internal adversary knows the whole Laplacian aratiilze initial conditions

of its out-neighbors as privileged internal adversaryRegarding external adversaries, we assume
they have access to the time history of all the communication messages. Wiortferextreme
case when an external adversary has additionally knowledge of thmptersy, 3, the Laplacian
matrix, and the initial conditions aspaivileged external adversary

The next result characterizes the privacy-preservation propefttee dynamic average consensus

algorithm @) against adversaries. Specifically, we show that this algorithm satisbetem4(a).

Lemma 6.YThe algorithm {) preserves the privacy of the local inputs against adversaries)
Let G be strongly connected and weight-balanced. The executions of thétahg¢#) over G with

a, 8> 0, initialized atz*(0) € R andv’(0) € R such thafy | v(0) = 0, satisfy

(a) an external (respectively internal) adversary cannot reearishre input of any (respectively
another) agent;
(b) a privileged adversary cannot reconstruct the input of agen{l,..., N} as long as there

existst > 0 such thati(t) # 0 for t € [0, 7).

Proof
First, we investigate the validity of claim (a). Using the results in the proof afofém4.1 and

recalling the change of variable8)( the solution of the algorithmd4j for given initial conditions

z%(0) € R andv’(0) € R, fori € {1,..., N} can be written as follows
=) _|Su S| |20+ (F T WOy | (v s v )| )
(t) Sor S| |0(0) + Iy (w(0) + au(0)) Ty (4(t) + au(t))

~R [, ®(t,7)e " dr RTa(0) + R [, ®(t,r) R a(r)dr

aR [ ®(t,7)e " dr RTu(0) — aR [; ®(t,7)RTu(7)dr + e~ RRTu(0) — RRuft)
whereS;; and S, are given in {8), andS,; and Sy, are given in 41). For an external adversary
that only has knowledge of the time historyafthe number of unknowns ip) (i.e., w(0), u(t),
u(t), v(t), for vt > 0, «, 8 and L), regardless of the initial condition requirem@jtéi1 v*(0) =0,
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is larger than the number of equations. This is true even if the inputs are 3tatis, the claim
(a) for external adversaries follows. Regarding the claim (a) for mialesidversaries, we consider
the extreme case where the adversarial agent; sigythe in-neighbor of every other agent in the
network, and therefore knows the time history of the aggregated vechtow consider4b) for all

i € V\ {j}. Recall that agenj does not knowL,;, k € V, of all agenti € V' \ {j}. Therefore,
even if it knows the initial conditions?(0), it cannot obtainvi(t), ¢t > 0. Next consider 43),
and again assume an extreme case that the adversarial jagant numerically reconstruci!
with an acceptable precision and the inputs are static. Despite these asssnipitause’ and
Zszl L;.2%, vt > 0 of allagenti € V' \ {;j} are unknown to agent regardless of value of, this
agent cannot reconstruet from (4b). This concludes validity of the claim (a) for internal agents.
Next, we examine claim (b) considering both the internal and externaltsatyecase at the same
time. For an internal adversary, assume the extreme case when it is thghbereof every other
agent in the network. As a result, it knows the time history of the aggregatgdre. At any given

T > 0, using its knowledge of:(t) overt € [0, 7] and the information on the initial conditions and
the parameters of the algorithm, a privileged internal or external adyecaa reconstruct(t),
ie{l,...,N}, for all t € [0, 7] by integrating 4b). The adversary can also use its knowledge of
x(t) overt € [0, 7] to construct numericallg:(¢) over the same period of time. Then, the adversary

using @3a), knows the right-hand side of the following equation

N
W+ au’ = —i' — art —6ZLijxj -, Vie{l,...,N}. (43)

Jj=1

Because there exists> 0 such thati’(¢) + 0 for ¢ € [0,7), (43) is an ordinary differential equation
(ODE) with variableu’. The adversary does not know the initial conditigi0), hence, it cannot

obtain the unique solution of the ODE, i.e., the dynamic inguflhis validates claim (b). O

Remark 6.XPrivacy preservation of static inputs against privileged adver3aries
To protect local static inputs from privileged adversaries, agents d@draatatic or time-varying
value to their inputs at the beginning for some short period of time (so thatetigrement
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of Lemma6.1(b) is satisfied) and then remove it. This modification does not affect thé fina

convergence properties of the algoritha). ( O

In general, the algorithm?) does not satisfy the requirements (b) and (c) of Probleidere, we

propose a slight extension &§) that overcomes this shortcoming. For eaeh{1,..., N}, let

N
Z';i = —a(zi — 'u,7) — ﬂZLijgj — Ui + ’lli, (44a)
=1
N
ot = aﬁZLijéja (44b)
j=1
N
B = —0(t) (' = ') + (2 ) = B L — vl 4l (44c)
j=1
=2 (), (44d)

where v : [0,00) — R is a common dynamic signal which is known to all agents. Ako,
[0,00) — R such tha®’ < ¢%(t) < §" for all t > 0 is a local signal only known to ageitThe role
of the signaky is to conceal the final agreement value from the external adversarsagisfy the
item (b) in Problen. Note that, becausE;V:1 L;; = 0, the signaky has no effect on the algorithm
execution, and therefore, the executions of algorithi#d§ and 38) are the same. Consequently,
Lemmab.1is valid for (44) as well. As agents communicaté instead ofz?, and the signal)

is unknown to the external adversaries, recovering the steady-stat®msf the algorithm is
impossible for such adversaries. The agreement state equation of emty; ag (440 is a local
equation, with all the components set by that agent. Therefé(@), andd’ can easily be concealed
from other agents, making it impossible for adversaries to reconstruttajeetories of:’. This
allows us to satisfy the item (c) in Problefn The following result shows that the algorithmj

is privacy preserving and solves Problénits proof is a consequence of the above discussion and

Lemmas5.1and6.1, and is omitted for brevity.

Lemma 6.4The algorithm {4) solves Problerd)
Under the hypotheses of Lemnfal, the ultimate tracking error bound?) is valid for all
trajectories — z*(t) of the algorithm ¢4) Furthermore,
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(b) (©

Figure 1. Weight-balanced digraphs used in simulatione@dje weights are equal 19.

(a) an external (respectively internal) adversary cannot reeanghre input of any (respectively
another) agent;

(b) a privileged adversary cannot reconstruct the input of agen{l,..., N} as long as there
existst > 0 such thati’(¢) 0 for t € [0,7);

(c) external adversaries cannot obtain the final agreement value ofetivork as long ag is
unknown to them;

(d) an adversary cannot reconstruct the trajectory z'(¢) of agenti € {1,..., N} as long as

x%(0) or #* is unknown to it.

7. SIMULATIONS

Here, we evaluate the performance of the proposed dynamic averagensois algorithms in a

number of scenarios. Fig.shows the weight-balanced digraphs employed in simulation.

7.1. Dynamic inputs offset by a static value

Consider a process described by a fixed value plus a sine wave wiegsericy and phase are
changing randomly over time. A group 6fagents with the communication topology shown in

Fig. 1(a) monitors this process by taking synchronous samples, each acetirdin
u'(m) = 2 4 sin(w(m)t(m) + ¢(m)) +b*, m=0,1,....

Because of the unknown fixed bias of each agent, after each sampling, every agent wants
to obtain the average of the measurements across the network beforextheampling time.
Here,w ~ N(0,0.25), ¢ ~ N(0, (7/2)?), with N(., .) indicating a Gaussian distribution. The data is

Copyright®© 201X John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Contr¢201X)

Prepared usingncauth.cls DOI: 10.1002/rnc



DYNAMIC AVERAGE CONSENSUS 35

Figure 2. Simulation results for the numerical example afti®e 7.1; The solid lines: the agreement states

of (30); x: sampling points atnAt; o: the average atAt; +: the average dto.

sampled at 0.5 Hertz, i.eAt = 2 seconds. The bias at each agerit'is- —0.55, b2 = 1, b> = 0.6,

b* = —0.9, b = —0.6, and b® = 0.4. Between sampling times: and m + 1, the inputui(k) is

fixed atu’(m). Figure 2 shows the result of the simulation using the discrete-time consensus
algorithm @0) with « = g = 1. The communication bandwidth is 2 Hertz, i.&+~ 0.5 seconds.

The application of §0) results in perfect tracking after some time as forecasted by Letima
Notice that in this example as it is impossible for agents to knoia+1), the use of the algorithm

in [17], which requires the agents to initialize their agreement state§ atl), results in tracking

with a steady-state error.

7.2. Networks with time-varying interaction topologies

Consider a group o6 agents whose communication topology is time-varying. We consider the

following cases for the input signals

ul(t) = 5sint + 75 + 1, ul(t) = 0.55sin(0.8¢),
u?(t) = bsint + g + 2, u?(t) = 0.5sin(0.7t) + 0.5 cos(0.6t),
| W) = 5sint + g + 3, | wt) =01,
Case 1: Case 2:
u*(t) = 5sint + 10e~" +4, u*(t) = atan(0.5t),
ub(t) = 5sint + atant — 1.5, ub(t) = 0.1 cos(2t),
u®(t) = 5sint — tanht + 1 u®(t) = 0.5sin(0.5¢).
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‘—zl—z2—z3714715 26— input average

0 10 20
t

(a) Case 1 (b) Case 2

Figure 3. Simulation results for Case 1 and Case 2 of the rinatexample of Sectioi.2: Solid thick blue

line (colored thin lines) is the input average (resp. age@ratate of agents).

In Case 1, the communication topology iteratively changes, in alphabetidal, oevery two
seconds among the digraphs in Figb)-(e). In Case 2, the communication topology changes, in
alphabetical order, every two seconds among the digraphs id(@g(e). Aftert = 10 seconds, the
communication topology is fixed at the digraph in Figa). Figure3 shows the simulation results
generated by implementing the algorith#) (ith the following parameters: in Cased= 8 =1
and in Case 2y = 3 andg = 10.

These examples show that, as long as the switching signal beloSgs.tg, the agreement staté
stays bounded. In Case 1, because the input signals converge to a dmmtion, the version
of Lemma4.3 for switching networks implies that the algorithm) (converges to the average
with zero steady-state error. However, in Case 2, we only can guarénateking with bounded
steady-state error. During the times that the network is only weight-balatieeeérror grows but
still stays bounded. One can expect that each connected groupgesie their respective input
average. During these periods of time, there is no way for separate cemgdo have knowledge
of the other groups’ inputs. However, once the network is stronglyectied and weight-balanced,

then @) resumes its tracking of the input average across all network, astedpec

7.3. Limited control authority

We use the following numerical example to demonstrate the performance ofgtrttans @)
and 38) when the driving command is bounded. Consider a group of 6 agentawoonmunication
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0 10 t 50 30 35 0 10 t2‘0 30 35

(a) Dynamic average consensus algorittn ( (b) Dynamic average consensus algoritfa8) (

Figure 4. Simulation results for the numerical example aft®a 7.3: Solid blue line (black dashed lines) is

the input average (resp. agreement state of agents).

topology is given in Figl(a). The input signals are as follows

ul(t) = u(t) (4 cos(0.5t) + 10), u?(t) = u(t)(4tanh(t — 5) + 4tanh(t — 25) + 5),
ud(t) = u(t)(4 sin(0.5t + 1) +8), u*(t) = u(t)(4atan(0.5t — 5) — 6),

ud(t) = u(t)(sin(2t) — 5), ub(t) = u(t)(4 cos(0.5t) + 7),

wherew(t) = >°7° ((=1)"H(t — 101)), in which H is the step functionH () =0 if ¢ <0, and
H(t) =1if t > 0. For both algorithms4) and 88) we usen = 10 and = 15. In the algorithm 898)
we setf’ = 1 and we use the saturation boufid= 15 for all i € {1,...,6}. Figure4 shows the
results of the simulation for these two algorithms. Using high values e can reduce the tracking
error, however, this results in higher driving commands. As a result, &igthrithms violate the
saturation bound. However, because the requirements of Lénttage satisfied in this example, as
shown in Fig.4(b), the ultimate tracking behavior of the agreement states of the algor&Em (
despite the saturation resembles the response of the algordthin the absence of saturation

bounds. There is not such guarantees for the algorithritsée Fig4(a)).

8. CONCLUSIONS

This paper has addressed the multi-agent dynamic average consenblesnpover strongly
connected and weight-balanced digraphs. We have proposed a déstriddgorithm that makes
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individual agents track the average of the dynamic inputs across the rketvith a steady-

state error. We have characterized how this error and the rate of rgemee depend on the

design parameters of the proposed algorithm, and identified special ch#sgsuts for which

the steady-state error is zero. Our algorithm enjoys the same convergeperties in scenarios

with time-varying topologies and is amenable to discrete-time implementations. Wealsave

considered extensions of the algorithm design that can handle limited canthalrity and privacy

preservation requirements against internal and external adverdaniesse work will include the

study of discrete-time implementations with time-varying topologies and limited conttiobgty,

the design of provably-correct algorithms that do not require a prierght-balanced interaction

topologies, and applications to distributed estimation and map merging scenarios.

10.
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A. SUPPORTING MATERIAL FOR THE PROOF OF LEMMA.2

The following results are used in the proof of LemBa.

Proposition A.1

Consider the system

y = —Psate(y —w) — fw, (45)

wherez,w,8 € R, >0 and w is a piece-wise continuous time-varying signal. Assume that

llw|less< €. Then, for any initial conditiory(0) € R, y(t) — 0 asymptotically.
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Proof
Consider the candidate Lyapunov functigh= %yQ with derivative V = —ysatz(y — w) — yw
along the trajectories ofif). To prove thal/ is negative definite, first note that becaljs€|ess < ¢,

we have thatify —w > ¢theny > ¢+ w > 0andify — w < —ctheny < —¢+ w < 0. As aresult,

—y(c+w) < —(€—[[w|lesdly| <0, fy—w>eg,

V=4_-y2<o, if |y —w| <e,

—y(—c+w) < —(€—||w|lesg|y] <0, ify—w<—c.
All the conditions of the Lyapunov stability analysis for non-autonomousesys P3, Theorem

4.9] are satisfied globally. Thereforgit) — 0 globally asymptotically ag — oc. O

Proposition A.2
Consider the system

& = —satz(B(z —u) — ), (46)

wherex,u € R andu is a piece-wise continuous time-varying signal. Assumend its derivative
4 are both essentially bounded signals, and there is some fiite0 such that for allt > ¢*,

|u(t)| < e. Then, for any initial conditior:(0) € R we haver(t) — wu(t) asymptotically.

Proof
Given that ¢6) is ISS, c.f. p4], and since5u + « is bounded, for any finite initial condition(0),
there is a finiteu(xz(0)) > 0 such that we havér| < u(z(0)) for all ¢ > 0. Under the change of

variablesy = 5(x — ), equation 46) can be written in the following equivalent form

y = —Bsate(y — i) — pu. (47)

Since the solutions ofi) are all bounded and because batandx are bounded signals, starting
from any initial condition, we have the guarantee that the solution$9f ére also bounded. Since
the input to the system47) satisfies the conditions of Propositidnl after some finite time*,

we can conclude that(t) — 0, or equivalently:(¢) — u(t), globally asymptotically. O
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