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Abstract— Motivated by the fact that the gradient-based op-
timization algorithms can be studied from the perspective of
limiting ordinary differential equations (ODEs), here we derive
an ODE representation of the accelerated triple momentum
(TM) algorithm. For unconstrained optimization problems with
strongly convex cost, the TM algorithm has a proven faster
convergence rate than the Nesterov’s accelerated gradient
(NAG) method but with the same computational complexity. We
show that similar to the NAG method, in order to accurately
capture the characteristics of the TM method, we need to use a
high-resolution modeling to obtain the ODE representation of
the TM algorithm. We propose a Lyapunov analysis to inves-
tigate the stability and convergence behavior of the proposed
high-resolution ODE representation of the TM algorithm. We
compare the rate of the ODE representation of the TM method
with that of the NAG method to confirm its faster convergence.
Our study also leads to a tighter bound on the worst rate
of convergence for the ODE model of the NAG method. In
this paper, we also discuss the use of the integral quadratic
constraint (IQC) method to establish an estimate on the rate of
convergence of the TM algorithm. A numerical example verifies
our results.

I. INTRODUCTION

As it has been known in the classical optimization literature,

improvement to the rate of convergence of optimization

algorithms within a first-order framework can be obtained

through methods such as quasi-Newton [1], [2], Polyak’s

heavy-ball [3], [4], and Nesterov’s accelerated gradient

(NAG) [5], [6] methods. Among these methods, because of

its simple structure and its global convergence guarantees

for convex objective functions, NAG has received much

attention in the optimization and machine learning commu-

nity. However, the quest for alternative fast converging first-

order optimization algorithms is still an ongoing research

topic. Recently, a new accelerated gradient-based method

called the Triple Momentum (TM) method, which has the

same computational complexity as the NAG method but

with a proven faster convergence rate, was proposed in [7].

Our objective in this paper is to obtain a high-resolution

continuous-time representation for the TM method and study

its stability and convergence via control theoretic tools.

ODE representation and its analysis for optimization algo-

rithms in the continuous-time domain have a long history

going back to [8]; more discussions can be found in [9]–

[13]. Continuous-time modeling comes with ease in the-
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oretical analysis via powerful control theoretic tools such

as Lyapunov analysis, perturbation theory, and the integral

quadratic constraint (IQC) methods. Also, the continuous-

time perspective provides intuition to design new algorithms,

especially arriving at distributed algorithms in a system-

atic way from centralized solutions. Furthermore, the con-

vergence analysis of several gradient-based Markov Chain

Monte Carlo sampling schemes relies on the continuous-

time approximation of such algorithms [14], [15]. Therefore,

recently, ODE modeling has regained popularity to address

the need to design new distributed gradient descent based

optimization algorithms [16]–[20], as well as to analyze

the new accelerated optimization algorithms [21]–[25]. In

[21], a second-order ODE is presented as the limit of the

NAG method. The connection between ODEs and discrete

optimization algorithms is further strengthened in [22] by

establishing an equivalence between the estimate sequence

technique and Lyapunov function techniques. In [23], the

authors propose a variational, continuous-time framework

for understanding accelerated methods and show that there

is a Lagrangian functional that generates a large class of

accelerated methods in continuous time. NAG method and

many of its generalizations can be viewed as a systematic

way to go from the continuous-time curves generated by

the Lagrangian functional to a family of discrete-time accel-

erated algorithms [23]. An ODE-based analysis of mirror

descent given in [26] delivers new insights into the con-

nections between acceleration and constrained optimization,

averaging, and stochastic mirror descent. A deeper insight

into the acceleration phenomenon via high-resolution ODE

representation of various first-order methods is presented in

[24]. These high-resolution ODEs are shown to permit a gen-

eral Lyapunov function framework for convergence analysis

in both continuous and discrete time [24]. Finally, in [25], the

authors show that different types of proximal optimization

algorithms based on fixed-point iteration can be derived from

the gradient flow by using splitting methods for ODEs.

The connection between ODE representation of optimization

algorithms and their discrete-time counterpart is often estab-

lished by taking the step size of the discrete-time algorithm to

zero and deriving a limiting ODE using first-order derivatives

modeling. This approach works well for gradient descent

and Newton algorithms (thus obtaining ẋ = −∇f(x) and

ẋ = −∇2f(x)−1∇f(x) from x(k + 1) = x(k) − s∇f(x)
and x(k+1) = x(k)−s∇2f(x(k))−1∇f(x(k)), respectively,

where s is the step size). However, recent literature has

shown that first-order ODE modeling of accelerated algo-



rithms such as the Polyak’s heavy-ball and NAG methods

fails to capture the true behavior of these algorithms [24].

In fact, it has been shown that the first-order ODE repre-

sentation cannot differentiate between these two algorithms

since it yields an identical limiting equation for both. Recent

literature, therefore, has looked at higher-order resolution

ODE representation of these algorithms [21], [24]. These

high-resolution ODEs are more accurate since they better

capture the characterizations of the discrete-time accelerated

methods in their continuous-time counterpart representations.

In this paper, we derive a higher-resolution ODE repre-

sentation for the accelerated TM method and show that

the high-resolution ODE is able to accurately capture the

characterizations of the TM method. For clarity, hereafter we

refer to the TM method of [7] as the discrete-time TM. We

first use an IQC framework as a convenient tool to assess the

stability and obtain an estimate on the the rate of convergence

of the continuous-time TM method. However, since the

IQC provides only a sufficient condition for stability and

convergence analysis, next, we use a Lyapunov analysis to

study the stability and convergence behavior of the higher-

resolution ODE representation of TM method. We further

use the Lyapunov analysis to show that the TM method

is robust to minor deviations in algorithm parameters. We

also use our framework to estimate the rate of convergence

of the TM algorithm and compare it to the NAG method,

which confirms its faster convergence. Our work also leads

to a tighter estimate on the rate of convergence of the ODE

representation of the NAG method. Using a numerical ex-

ample, we show the accuracy of our higher-order resolution

ODE representation in capturing the accelerated behavior of

the TM method and its faster convergence over the high-

resolution ODE representation of the NAG method given

in [24].

Notations: R and R>0 are the set of real and positive real

numbers. A⊤ is the transpose of matrix A. We let 0n denote

the vector of n zeros and In denote the n×n identity matrix.

When clear from the context, we do not specify the matrix

dimensions. For a vector x ∈ R
n, ‖x‖ =

√
x⊤x is the

standard Euclidean norm. The gradient of f : R
d → R,

is denoted by ∇f(x). The following relations hold for a

differentiable function f : R
d → R that is M -strongly

convex, M ∈ R>0, over Rd ,

f(y)−f(x)≤∇f(x)⊤(y−x)+
1

2M
‖∇f(y)−∇f(x)‖2, (1a)

M‖y − x‖2 ≤ (y − x)⊤(∇f(y)−∇f(x)), (1b)

M‖y − x‖ ≤ ‖∇f(y)−∇f(x)‖, (1c)

for any x, y ∈ R
d [27]. When ∇f : Rd → R

d of a convex

function f : Rd → R is L-Lipschitz continuous, L ∈ R>0,

i.e., ‖∇f(y)−∇f(x)‖ ≤ L‖y − x‖, we have

f(y)− f(x) ≤ ∇f(x)⊤(y − x)+
L

2
‖y−x‖2, (2a)

f(y)−f(x) ≥ ∇f(x)⊤(y − x)+
1

2L
‖∇f(y)−∇f(x)‖2, (2b)

for all x, y ∈ R
d ×R

d [27]. We represent the class of differ-

entiable and M strongly convex functions whose gradient is

L-Lipschitz with SM,L.

II. PROBLEM DEFINITION

Consider

x
⋆ = argminx∈Rn f(x), (3)

where f : Rn → R and f ∈ SL,M . We assume that x⋆ exists

and is reachable. The minimizer of this optimization problem

is specified as follows.

Lemma II.1 (Minimizer of (3) [1]). Consider optimization

problem (3). A point x⋆ ∈ R
n is a unique solution of (3) if

and only if ∇f(x⋆) = 0.

In what follows, we let

κ =
L

M
, ρ = 1− 1√

κ
. (4)

We refer to κ as the condition number of the cost function f .

A. Discrete-time TM Method

Here we consider the TM method, proposed in [7] as the

fastest known globally convergent first-order method for

solving strongly convex optimization problems. The TM

method is an accelerated gradient-based optimization algo-

rithm given as

ǫk+1 = (1 + β)ǫk − βǫk−1 − α∇f(yk), (5a)

yk = (1 + γ)ǫk − γǫk−1, (5b)

xk = (1 + δ)ǫk − δǫk−1, (5c)

where the algorithm parameters are given as (recall (4))

(α, β, γ, δ) =

(

1 + ρ

L
,

ρ2

2− ρ
,

ρ2

(1+ρ)(2−ρ)
,

ρ2

1−ρ2

)

, (6)

and ǫ0, ǫ−1 ∈ R
n are the initial conditions, x ∈ R

n is the

output. The TM method has the same numerical complexity

as the NAG method but converges faster. In [7], it is shown

that starting from any initial conditions ǫ0, ǫ−1 ∈ R
n, the

trajectories of xk, yk, ǫk converge to x
⋆ with the same rate but

the convergence error is lowest for the output x. We observe

the same trend in the high-resolution ODE representation of

the TM method; see Section V for numerical examples.

Our objective in this paper is to derive a high-resolution ODE

representation of the TM algorithm that accurately captures

the performance characteristics of its discrete-time counter-

part and establish its formal convergence guarantees using

the Lyapunov stability analysis. To facilitate our discussions

given next, we define a function µ(α, β) : R>0 ×R → R>0

(or simply µ) as

µ(α, β) =

(

1− β√
α(1 + β)

)2

. (7)

Using the parameter relations given in (4) and (6) for the

TM method, µ = µ(α, β) can also be written as

µ =
(9κ2

√
κ− 6κ2 + κ

√
κ)L

8κ3
√
κ− 12κ3 + 14κ2

√
κ− 9κ2 + 4κ

√
κ− κ

. (8)
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Fig. 1: µ/L (solid blue) and µ/M (dashed red) vs. κ.

As shown in Fig. 1, the maximum value of µ is L, which is

attained at κ=1. When κ→∞, µ→0. We can also show that

µ(α, β) ∈ (0, L]. (9)

Replacing L with κM in (7), we can also show that

µ(α, β) ∈ [M, 1.3661M ]. (10)

Remark II.1 (Role of parameter µ). Parameter µ plays a

vital role in the analysis of the high-resolution ODE repre-

sentation of the TM method. Also note that after substituting

appropriate α and β values into (7), we obtain µ
NAG

=M for

NAG method while µ ≥ M for the TM method. Therefore

the parameter µ also plays an important role when comparing

the convergence rate between the high-resolution NAG and

TM methods. �

III. CONTINUOUS-TIME REPRESENTATION OF THE TM

METHOD

Let tk = k
√
α and yk = Y (tk) for some sufficiently smooth

curve Y (t). Now the Taylor series expansion at both yk+1

and yk−1 with the step size
√
α are

yk+1 = Y (tk+1) = Y (tk) + Ẏ (tk)
√
α

+
1

2
Ÿ (tk)(

√
α)2 +O((

√
α)3),

(11)

yk−1 = Y (tk−1) = Y (tk)− Ẏ (tk)
√
α

+
1

2
Ÿ (tk)(

√
α)2 +O((

√
α)3).

(12)

Combining (11) and (12) yields

Y (tk+1) + Y (tk−1)− 2Y (tk) = αŸ (tk) +O(α2). (13)

Next, we note that we can rewrite (5) as

ǫk+1 = ǫk + β (ǫk − ǫk−1)− α∇f(yk), (14a)

yk = ǫk + γ (ǫk − ǫk−1) , (14b)

xk = ǫk + δ (ǫk − ǫk−1) . (14c)

From (14a), we obtain

β (ǫk−1 − ǫk) + (ǫk+1 − ǫk) + α∇f(yk) = 0. (15)

Now adding and subtracting β (ǫk+1 − ǫk) and divid-

ing both sides of (15) with βα yields
(ǫk+1+ǫk−1−2ǫk)

α
+

(1−β)
βα

(ǫk+1 − ǫk)+
1
β
∇f(yk) = 0. Substituting ǫk = ε(tk)

and yk = Y (tk) and (13) yields

ε̈(tk) +O(α) +
1− β

β
√
α

(

ε̇(tk) +
1

2
ε̈(tk)

√
α+O(α)

)

+
1

β
∇f(Y (tk)) = 0, (16)

where we used ε(tk+1)−ε(tk) = ε̇(tk)
√
α+ 1

2 ε̈(tk)(
√
α)2+

O((
√
α)3). If we consider the limit of (16), when α → 0,

we then obtain the low-resolution representation for the TM

algorithm as

ε̈(tk) + 2
√
µ ε̇(tk) +∇f(Y (tk)) = 0, (17)

where we used β =
1−√

µα

1+
√
µα

. The low-resolution repre-

sentation in (17) is exactly the same as the low-resolution

ODE obtained for the NAG and heavy ball methods in [24].

Therefore the low-resolution ODE fails to distinguish the

TM method from the NAG and heavy ball methods. Next, we

derive a high-resolution ODE that captures the characteristics

of the TM method, i.e., shows a faster convergence in

comparison to the NAG and heavy ball methods.

A. High-resolution ODE of TM Method

We obtain a high-resolution ODE for the TM method by ig-

noring O(α) terms but keeping
√
α in (16), which results in

1 + β

2β
ε̈(tk) +

1− β

β
√
α
ε̇(tk) +

1

β
∇f(Y (tk)) = 0. (18)

Now multiplying both sides of (18) by
2β

1 + β
and substitut-

ing (7) yields

ε̈(tk) + 2
√
µε̇(tk) + (1 +

√
µα)∇f(Y (tk)) = 0,

where we used
2

1 + β
= 1+

√
µα. Next, we note that from

(12) we have

ε(tk)− ε(tk−1) = ε̇(tk)
√
α+O(α). (19)

Ignoring the O(α) term and substituting (19) into (14b)

yields Y = ε +
√
αγε̇. Let xk = X(tk). Similarly, from

(14c) we have X = ε+
√
αδε̇. Thus, we obtain

ε̈+ 2
√
µ ε̇+ (1 +

√
µα)∇f(Y ) = 0, (20a)

Y = ε+
√
αγ ε̇, (20b)

X = ε+
√
αδ ε̇. (20c)

as a high-resolution ODE that maintains the main characteris-

tics of the TM method with the appropriate initial conditions

ε0 and Y0. Note that differentiating (20a) yields
...
ε + 2

√
µε̈+ (1 +

√
µα)∇2f(Y )Ẏ = 0. (21)

Substituting (20b) and its first and second derivative Ẏ =
ε̇ +

√
αγε̈ and Ÿ = ε̈ +

√
αγ

...
ε into (21) yields the high-

resolution representation of the TM method in terms of

output Y as

Ÿ + 2
√
µẎ +γ(1 +

√
µα)

√
α∇2f(Y )Ẏ

+ (1 +
√
µα)∇f(Y ) = 0.

(22)

In what follows, we use (22) to analyze the stability and

convergence of the ODE representation of the TM method



in (20) and compare its rate of convergence to that of

the high-resolution ODE representation of the NAG method

given in [24] as

Ÿ +2
√
MẎ +

√
s∇2f(Y )Ẏ +(1 +

√
Ms)∇f(Y )=0, (23)

where s = 1
L

. One can think of s as the equivalent of α
in the TM method (5), i.e., it is the step-size multiplying

the gradient term. In comparing the TM method to the NAG

method, it is interesting to recall (10). It is important to note

that the main difference between the NAG method given

in (23) and the TM methods in (22) is in the coefficient

multiplying the gradient correction term ∇2f(Y )Ẏ . Even

though it is not discussed in [24], it is worth mentioning

that by introducing an appropriate intermediate variable

similar to (20b), one can write the NAG method in an

equivalent form that does not require ∇2f(Y ). In the ODE

representation of the TM and NAG algorithms we also refer

to the parameters α and s as stepsize.

IV. CONVERGENCE ANALYSIS

In this section, we analyze the stability of (20) and obtain

an estimate on its convergence rate. Before we begin the

analysis, note the equilibrium point of (20a), where ε̈ =
ε̇ = 0. It follows from (20b) and (20c) that εeq = Yeq =
Xeq. As a result, at the equilibrium point, from (20a) we

obtain ∇f(εeq) = 0, and thereby ∇f(Yeq) =∇f(Xeq) = 0.

Consequently, by virtue Lemma II.1 we obtain

Xeq = Yeq = εeq = x
⋆. (24)

A. Analysis via IQC

We note that algorithm (20) can be cast as an LTI system

ξ̇(t) = Aξ(t) +Bq(t), (25a)

Y (t) = Cξ(t) +Dq(t), (25b)

with state ξ(t) = [ε̇(t) ε(t)]⊤ ∈ R
2n, input q(t) =

∇f(Y (t)) ∈ R
n, and output Y (t) ∈ R

n, where A =
[

−2
√
µ 0

1 0

]

⊗ In, B =
[

−(1+
√
µα)

0

]

⊗ In, C = [
√
αγ 1 ]⊗

In, D = 0n×n. Given (25) representation, the IQC analysis

provides a convenient framework to assess the stability of

continuous-time TM (20) and obtain an estimate on its

convergence rate. When f ∈ SM,L, [28] shows that the

nonlinear map q(t) = ∇f(Y ) satisfies the so-called point-

wise IQC condition cast as
[

Y−Yeq

∇f(Y )−∇f(Yeq)

]⊤
Qf

[

Y−Yeq

∇f(Y )−∇f(Yeq)

]

� 0, (26)

where Qf =
(−2ML L+M

L+M −2

)

⊗In. Recall from (24) that Yeq=
x
⋆.

Lemma IV.1 (An estimate on the rate of convergence of

Y in (20) using an IQC based solution). Given the LTI

representation of the continuous-time TM in (25) satisfies the

point-wise IQC condition (26), the exponential convergence

rate of ‖Y (t)− x
⋆‖ to zero is p

IQC
if

[

A⊤P+PA+p
IQC
P PB

B⊤P 0

]

+σ

[

C⊤ 0
D⊤ I

]

Qf

[

C D
0 I

]

�0

(27)
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Fig. 2: Convergence rate of the TM method given by the IQC

method of Lemma IV.1.

is feasible for some σ ∈ R≥0, p
IQC

∈ R>0, P ≻ 0, P ∈
R

n×n. A tighter estimate p⋆
IQC

on the rate of convergence

can be obtained by maximizing p
IQC

subject to (27). �

Given (26), the proof of Lemma IV.1 follows form standard

IQC stability results [29]. Figure 2 shows the convergence

rate p⋆
IQC

the IQC method of Lemma IV.1 for various values

of M and κ. As we can see, the IQC approach shows that

similar to the gradient descent method, the rate of conver-

gence of the TM method also decreases as the condition

number κ increases. We should mention here though that

the IQC approach offers a sufficient condition for stability

and convergence analysis, which is not guaranteed to yield

a solution for every value of M and L.

B. Lyapunov Analysis

In this section, we establish the exponential stability of the

continuous-time TM algorithm (20) and give an estimate on

its rate of convergence using a framework regardless of the

value of M ∈R>0 and L∈R>0.

Theorem IV.1 (Stability and convergence analysis the ODE

TM). The following two statements hold for the optimization

problem (3) and the algorithm (20):

(i) For α, β, γ, δ ∈ R>0, β 6= 1, starting from any initial

condition ε(0), ε̇(0) ∈ R
n the trajectories of t 7→ ε,

t 7→ X and t 7→ Y converge exponentially fast to x
⋆,

the minimizer of (3). Moreover, f(Y )−f(x⋆) vanishes

exponentially with a rate no worse than p⋆ where

p⋆ = max
φ∈R>0

p(φ), (28)

p(φ) = min

{√
µ

2
,

3L

4κ(1 + φ)
√
µ
,

1

γ
√
α(1 + 1

φ
)
,
4
√
µ

3 + 2
φ

}

.

(ii) If α, β, γ, δ > 0 is set to the parameters of the

TM method in (6) and the algorithm is initialized

at ε(0) = Y0 − αγ2(1+
√
µα)∇f(Y0)

(1−2γ
√
µα) and ε̇(0) =

√
αγ(1+

√
µα)∇f(Y0)

(1−2γ
√
µα) , where Y0 = Y (0) ∈ R

n, then the

trajectory t 7→ Y of (20) satisfies

f(Y (t))− f(x⋆) ≤ 1.5‖Y0 − x
⋆‖

α

2

e
−p⋆

TM
t, t ∈ R≥0,

where p⋆
TM

is p⋆ evaluated at µ given by (8), and α and

γ of the TM method. �
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Fig. 3: p⋆/
√

L vs. κ, where p⋆ is given in (28). Here, we use

β and γ of the TM method but implement different values for α.

αTM corresponds to the α of the TM method.

The proof of Theorem IV.1 relies on studying convergence

of (22) using radially unbounded Lyapunov function candi-

date V (t) = (1 +
√
µα)(f(Y )− f(x⋆)) + 1

4‖Ẏ ‖2 + 1
4‖Ẏ +

2
√
µ(Y − x

⋆) + γ(1 +
√
µα)

√
α∇f(Y )‖2. Due to space

limitation the details are provided in [30]. Theorem IV.1

shows that (20) has robustness to deviations from the TM

parameters. But, an interesting observation about our rate of

convergence analysis is that our simulation study of the rate

p in Theorem IV.1 indicates that the best rate is obtained

when we use α, β, γ of the TM method given in (6), see

Fig. 3 for some example scenarios.

Next, we note that the rate of convergence established for

the ODE representation of the NAG method (23) in [24] is√
M
4 . Our analysis show that a tighter bound of

p⋆
NAG

= max
φ∈R>0

p
NAG

(φ), (29)

p
NAG

(φ)=min

{√
L

2
√
κ
,

3
√
L

4
√
κ(1+φ)

,

√
L√

κ(1+ 1
φ
)
,

4
√
L√

κ(3+ 2
φ
)

}

.

can be obtained for the convergence rate p⋆
NAG

of the ODE

NAG method; for details see [30]. Given L
κ

= M , we

can write p
NAG

(φ) = min
{

1
2 ,

3
4(1+φ) ,

1
(1+1

φ
)
, 4
(3+2

φ
)

}√
M.

Figure 4 shows how each of the four elements varies with φ
and the optimal φ for which the minimum among the four

elements is at its maximum. As can be seen and also shown

analytically p⋆
NAG

= 3
7

√
M is attained at φ⋆ = 3

4 = 0.75.

Thus, p⋆
NAG

is a tighter bound than
√
M
4 that is established

in [24] as the rate of convergence for the ODE NAG method.

On the other hand, Fig. 5 compares
p

TM√
L

with
p

NAG√
L

at different

values of κ. As we can see the TM method attains a better

convergence rate than the NAG method. In comparing the

rate of convergences of the TM and NAG methods, it is

worth to remember (8) and (9). It is also interesting to

note that similar to the gradient descent method, the rate

of convergence of the TM and the NAG methods decreases

as κ increases. Finally note that φ⋆ corresponding to p⋆
TM

can

be obtained as φ⋆ =
9L−16µκ+

√
256(µκ)2+96µkL+81L2

32µk .

V. SIMULATION RESULTS

Let the cost function in (3) be given by f(x) = x2

2 log(2+x2) −
x. For this cost, we have M = 0.038 and L = 1.443. Thus,
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Fig. 4: Variation of the elements of
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(1+ 1

φ
)
,
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(3+ 2

φ
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}

with φ.
p⋆

NAG
√

M
=

3
7
= 0.4286 is attained at φ⋆

= 0.75.
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Fig. 5: Rate of convergence of the ODE representations of the TM

and the NAG methods at different values of κ.

κ = 37.713. Figure 6(a) shows the convergence error for the

TM, NAG, gradient descent with stepsize 1/L (GD), high-

resolution ODE representations of TM (20) and NAG (23)

methods, and continuous-time gradient descent (ODE GD)

algorithms. Figure 6(b) shows the same plot when a smaller

stepsize is used for all the algorithms. As we can see in these

plots, the high-resolution ODE representation of the TM

algorithm closely captures the characteristics of the discrete-

time TM. Moreover, we can see from the plots that for both

cases, the TM algorithm converges faster than the gradient

descent and the NAG methods. We can also see that using

a smaller stepsize removes the oscillatory behavior that we

see in the trajectories of the TM and NAG methods however

as expected and predicted by our analysis using a smaller

stepsize results in a slower convergence.

VI. CONCLUSION

In this paper, we presented the ODE representation of the

the TM method, which is considered as the fastest first-

order optimization method for strongly convex functions.

We showed that to obtain an accurate continuous-time rep-

resentation of the TM method, we need to use a higher-

resolution limiting ODE representation. We also presented a

Lyapunov analysis to prove the exponential convergence of

the developed continuous-time model of the TM method. We

compared the rate of this ODE model of the TM with that of

the Nesterov method and showed that the Lyapunov analysis

also confirms that the TM method has a faster convergence

than the Nesterov method. We also discussed how an IQC
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(a) When the parameters of the algorithms are set to their
respective exact values

0 10 20 30 40 50 60
-15

-10

-5

0

5

TM

NAG

GD

High-Res.TM

High-Res.NAG

ODE.GD

(b) When the parameters of the algorithms are set to their
respective exact values except for stepsizes which are scaled
down by a factor of 0.3

Fig. 6: Convergence error for the TM, NAG and gradient descent

(GD) algorithms.

approach can be used to obtain an estimate on the conver-

gence rate of the ODE representation of the TM method. We

validated our theoretical results through several numerical

simulations. Since control theoretic tools in continuous-

domain generally provide a convenient framework for design

and analysis of algorithms, our future work includes first

devising a distributed version of the continuous-time TM

method that can be used for distributed optimizations. Then,

our objective is to discretize this algorithm to obtain an

iterative solution that can be implemented over networks with

wireless communication.
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